
16
Electrical Energy and Capacitance

QUICK QUIZZES

1. Choice (b). The fi eld exerts a force on the electron, causing it to accelerate in the direction 

 opposite to that of the fi eld. In this process, electrical potential energy is converted into kinetic 

energy of the electron. Note that the electron moves to a region of higher potential, but because 

the electron has negative charge this corresponds to a decrease in the potential energy of the 

 electron.

 2. Choice (a). The electron, a negatively charged particle, will move toward the region of higher 

electric potential. Because of the electron’s negative charge, this corresponds to a decrease in 

electrical potential energy.

 3. Choice (b). Charged particles always tend to move toward positions of lower potential energy. 

The electrical potential energy of a charged particle is PE = qV  and, for positively-charged 

 particles, this decreases as V  decreases. Thus, a positively-charged particle located at x = A 

would move toward the left.

 4. Choice (d). For a negatively-charged particle, the potential energy (PE = qV ) decreases as V 

increases. A negatively charged particle would oscillate around x = B which is a position of 

 minimum potential energy for negative charges.

 5. Choice (d). If the potential is zero at a point located a fi nite distance from charges, negative 

charges must be present in the region to make negative contributions to the potential and cancel 

positive contributions made by positive charges in the region.

 6. Choice (c). Both the electric potential and the magnitude of the electric fi eld decrease as the 

distance from the charged particle increases. However, the electric fl ux through the balloon does 

not change because it is proportional to the total charge enclosed by the balloon, which does not 

change as the balloon increases in size.

 7. Choice (a). From the conservation of energy, the fi nal kinetic energy of either particle will be 

given by

KE f = KEi + PEi − PE f( ) = 0 + qVi − qVf = −q Vf − Vi( ) = −q ΔV( )

 For the electron, q = −e and ΔV = +1 V giving KE f = − −e( ) +1 V( ) = +1 eV.

 For the proton, q = +e and ΔV = −1 V, so KE f = − e( ) −1 V( ) = +1 eV, the same as that of the 

electron.

 8. Choice (c). The battery moves negative charge from one plate and puts it on the other. The fi rst 

plate is left with excess positive charge whose magnitude equals that of the negative charge 

moved to the other plate.

 9. (a) C decreases. (b) Q stays the same. (c) E stays the same.

 (d) ΔV increases. (e) The energy stored increases.
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Electrical Energy and Capacitance 31

 Because the capacitor is removed from the battery, charges on the plates have nowhere to go. 

Thus, the charge on the capacitor plates remains the same as the plates are pulled apart. Because 

E =s ∈0 = (Q A) ∈0 , the electric fi eld is constant as the plates are separated. Because ΔV = Ed 

and E does not change, ΔV increases as d increases. Because the same charge is stored at a higher 

potential difference, the capacitance (C = Q ΔV ) has decreased. Because energy stored = Q2
2C 

and Q stays the same while C decreases, the energy stored increases. The extra energy must have 

been transferred from somewhere, so work was done. This is consistent with the fact that the 

plates attract one another, and work must be done to pull them apart.

10. (a) C increases. (b) Q increases.  (c) E stays the same.

 (d) ΔV remains the same. (e) The energy stored increases.

 The presence of a dielectric between the plates increases the capacitance by a factor equal to the 

dielectric constant. Since the battery holds the potential difference constant while the capacitance 

increases, the charge stored (Q = CΔV ) will increase. Because the potential difference and the dis-

tance between the plates are both constant, the electric fi eld (E = ΔV d) will stay the same. The 

battery maintains a constant potential difference. With ΔV  constant while capacitance increases, 

the stored energy [energy stored = 1
2 C(ΔV )

2
] will increase.

11. Choice (a). Increased random motions associated with an increase in temperature make it more 

diffi cult to maintain a high degree of polarization of the dielectric material. This has the effect of 

decreasing the dielectric constant of the material, and in turn, decreasing the capacitance of the 

capacitor.

ANSWERS TO MULTIPLE CHOICE QUESTIONS

 1. The change in the potential energy of the proton is equal to the negative of the work done on it by 

the electric fi eld. Thus,

ΔPE = −W = −qEx Δx( ) = − +1.6 × 10
−19

 C( ) 850 N C( ) 2.5 m − 0( ) = −3.4 × 10
−16

 J

 and (b) is the correct choice for this question.

 2. Because electric forces are conservative, the kinetic energy gained is equal to the decrease in 

electrical potential energy, or

KE = −PE = −q ΔV( ) = − −1 e( ) +1.00 × 10
4
 V( ) = +1.00 × 10

4
 eV

 so the correct choice is (a).

 3. In a uniform electric fi eld, the change in electric potential is ΔV = −Ex Δx( ), giving

Ex = − ΔV

Δx
= −

Vf − Vi( )
x f − xi( ) = − 190 V − 120 V( )

5.0 m − 3.0 m( ) = −35 V m = −35 N C

 and it is seen that the correct choice is (d).
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 4. From conservation of energy, KE f + PE f = KEi + PEi, or 1
2 mvB

2 = 1
2 mvA

2 + qVA − qVB, the fi nal 

speed of the nucleus is

   vB = vA

2 + 2q(VA − VB)

m

= 6.20 × 10
5
 m s( )2

+
2 2 1.60 × 10

−19
 C( ) 1.50 − 4.00( ) × 10

3
 V⎡⎣ ⎤⎦

6.63 × 10
−27

 kg
= 3.78 × 10

5
 m s

 Thus, the correct answer is choice (b).

 5. In a series combination of capacitors, the equivalent capacitance is always less than any  individual 

capacitance in the combination, meaning that choice (a) is false. Also, for a series combination 

of capacitors, the magnitude of the charge is the same on all plates of capacitors in the combina-

tion, making both choices (d) and (e) false. The potential difference across the capacitance C
i
 is 

ΔVi = Q Ci, where Q is the common charge on each capacitor in the combination. Thus, the larg-

est potential difference (voltage) appears across the capacitor with the least capacitance, making 

choice (b) the correct answer.

 6. The total potential at a point due to a set of point charges q
i
 is

V = kqi ri
i

∑
 where r

i
 is the distance from the point of interest to the location of the charge q

i
. Note that in this 

case, the point at the center of the circle is equidistant from the 4 point charges located on the rim 

of the circle. Note also that q2 + q3 + q4 = +1.5 −1.0 − 0.5( ) mC = 0, so we have

Vcenter =
keq1

r
+

keq2

r
+

keq3

r
+

keq4

r
=

ke

r
q1 + q2 + q3 + q4( )=

ke

r
q1 + 0( ) =

keq1

r
= V1

= 4.5 × 10
4
 V

 or the total potential at the center of the circle is just that due to the fi rst charge alone, and the 

 correct answer is choice (b).

 7. With the given specifi cations, the capacitance of this parallel-plate capacitor will be

C =
k ∈0 A

d
=

1.00 ×10
2( ) 8.85 ×10

−12
 C

2
N ⋅m2( ) 1.00 cm

2( )
1.00 ×10

−3
 m

1 m
2

10
4
 cm

2

⎛
⎝⎜

⎞
⎠⎟

= 8.85 ×10
−11

 F = 88.5 ×10
−12

 F = 88.5 pF

 and the correct choice is (a).

 8. Keeping the capacitor connected to the battery means that the potential difference between the 

plates is kept at a constant value equal to the voltage of the battery. Since the capacitance of a 

parallel-plate capacitor is C =k ∈0 A d, doubling the plate separation d, while holding other 

characteristics of the capacitor constant, means the capacitance will be decreased by a factor 

of 2. The energy stored in a capacitor may be expressed as U = 1
2 C(ΔV )

2
, so when the potential 

 difference ΔV  is held constant while the capacitance is decreased by a factor of 2, the stored 

energy  decreases by a factor of 2, making (c) the correct choice for this question.

 9. When the battery is disconnected, there is no longer a path for charges to use in moving onto or 

off of the plates of the capacitor. This means that the charge Q is constant. The capacitance of a 
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parallel-plate capacitor is C =k ∈0 A d  and the dielectric constant is k ≈ 1 when the capacitor 

is air fi lled. When a dielectric with dielectric constant k = 2 is inserted between the plates, the 

capacitance is doubled C f = 2Ci( ). Thus, with Q constant, the potential difference between the 

plates, ΔV = Q C , is decreased by a factor of 2, meaning that choice (a) is a true statement. The 

electric fi eld between the plates of a parallel-plate capacitor is E = ΔV d and decreases when ΔV  

decreases, making choice (e) false and leaving (a) as the only correct choice for this question.

10. Once the capacitor is disconnected from the battery, there is no path for charges to move onto 

or off of the plates, so the charges on the plates are constant, and choice (e) can be eliminated. 

The capacitance of a parallel-plate capacitor is C =k ∈0 A d, so the capacitance decreases when 

the plate separation d is increased. With Q constant and C decreasing, the energy stored in the 

capacitor, U = Q2
2C, increases, making choice (a) false and choice (b) true. The potential 

difference between the plates, ΔV = Q C = Q ⋅d k∈0 A, increases and the electric fi eld between 

the plates, E = ΔV d = Q k ∈0 A, is constant. This means that both choices (c) and (d) are false 

and leaves choice (b) as the only correct response.

11. Capacitances connected in parallel all have the same potential difference across them and the 

equivalent capacitance, Ceq = C1 + C2 + C3 + … , is larger than the capacitance of any one of the 

capacitors in the combination. Thus, choice (c) is a true statement. The charge on a capacitor is 

Q = C(ΔV ), so with ΔV  constant, but the capacitances different, the capacitors all store different 

charges that are proportional to the capacitances, making choices (a), (b), (d), and (e) all false. 

Therefore, (c) is the only correct answer.

12. For a series combination of capacitors, the magnitude of the charge is the same on all plates of 

capacitors in the combination. Also, the equivalent capacitance is always less than any individual 

capacitance in the combination. Therefore, choice (a) is true while choices (b) and (c) are both false. 

The potential difference across a capacitor is ΔV = Q C, so with Q constant, capacitors having 

different capacitances will have different potential differences across them, with the largest potential 

difference being across the capacitor with the smallest capacitance. This means that choices (d) and 

(e) are false, and choice (f) is true. Thus, both choices (a) and (f) are true statements.

ANSWERS TO EVEN NUMBERED CONCEPTUAL QUESTIONS

 2. The potential energy between a pair of point charges separated by distance R is

PE = ke q1q2 R. Thus, the potential energy for each of the four systems is:

 (a) PEa = ke

Q 2Q( )
r

= 2ke

Q2

r
  (b) PEb = ke

−Q( ) −Q( )
r

= ke

Q2

r

 (c) PEc = ke

Q −Q( )
2r

= − 1

2
ke

Q2

r
  (d) PEd = ke

−Q( ) −2Q( )
2r

= ke

Q2

r

 Therefore, the correct ranking from largest to smallest is (a) > (b) = (d) > (c).

 4. To move like charges together from an infi nite separation, at which the potential energy of the 

system of two charges is zero, requires work to be done on the system by an outside agent. Hence 

energy is stored, and potential energy is positive. As charges with opposite signs move together 

from an infi nite separation, energy is released, and the potential energy of the set of charges 

becomes negative.

 6. A sharp point on a charged conductor would produce a large electric fi eld in the region near the 

point. An electric discharge could most easily take place at the point.
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 8. There are eight different combinations that use all three capacitors in the circuit. These combina-

tions and their equivalent capacitances are:

 All three capacitors in series: Ceq = 1

C1

+ 1

C2

+ 1

C3

⎛
⎝⎜

⎞
⎠⎟

−1

 All three capacitors in parallel: Ceq = C1 + C2 + C3

 One capacitor in series with a parallel combination of the other two:

Ceq = 1

C1 + C2

+ 1

C3

⎛
⎝⎜

⎞
⎠⎟

−1

, Ceq = 1

C3 + C1

+ 1

C2

⎛
⎝⎜

⎞
⎠⎟

−1

, Ceq = 1

C2 + C3

+ 1

C1

⎛
⎝⎜

⎞
⎠⎟

−1

 One capacitor in parallel with a series combination of the other two:

Ceq = C1C2

C1 + C2

⎛
⎝⎜

⎞
⎠⎟

+ C3, Ceq =
C3C1

C3 + C1

⎛
⎝⎜

⎞
⎠⎟

+ C2, Ceq =
C2C3

C2 + C3

⎛
⎝⎜

⎞
⎠⎟

+ C1

10. (a)  If the wires are disconnected from the battery and not allowed to touch each other or 

another object, the charge on the plates is unchanged.

 (b)  If, after being disconnected from the battery, the wires are connected to each other, elec-

trons will rapidly fl ow from the negatively charged plate to the positively charged plate to 

leave the capacitor uncharged with both plates neutral.

12. The primary choice would be the dielectric. You would want to choose a dielectric that has a 

large dielectric constant and dielectric strength, such as strontium titanate, where k ≈ 233 (Table 

16.1). A convenient choice could be thick plastic or Mylar. Secondly, geometry would be a factor. 

To maximize capacitance, one would want the individual plates as close as possible, since the 

capacitance is proportional to the inverse of the plate separation—hence the need for a dielectric 

with a high dielectric strength. Also, one would want to build, instead of a single parallel-plate 

capacitor, several capacitors in parallel. This could be achieved through “stacking” the plates of 

the capacitor. For example, you can alternately lay down sheets of a conducting material, such as 

aluminum foil, sandwiched between your sheets of insulating dielectric. Making sure that none 

of the conducting sheets are in contact with their nearest neighbors, connect every other plate 

together as illustrated in the fi gure below.

ConductorConductor

Dielectric

 This technique is often used when “home-brewing” signal capacitors for radio applications, as 

they can withstand huge potential differences without fl ashover (without either discharge between 

plates around the dielectric or dielectric breakdown). One variation on this technique is to sand-

wich together fl exible materials such as aluminum roof fl ashing and thick plastic, so the whole 

product can be rolled up into a “capacitor burrito” and placed in an insulating tube, such as a 

PVC pipe, and then fi lled with motor oil (again to prevent fl ashover).
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14. The material of the dielectric may be able to withstand a larger electric fi eld than air can with-

stand before breaking down to pass a spark between the capacitor plates.

ANSWERS TO EVEN NUMBERED PROBLEMS

 2. (a) 6.16 × 10
−17

 N

(b) 3.69 × 10
10

 m s
2

 in the direction of the electric field

(c) 7.38 cm

 4. 6.67 × 10
11

 electrons

 6. (a) 1.10 × 10
−2

 N to the right  (b) 1.98 × 10
−3

 J  (c) −1.98 × 10
−3

 J

(d) − 49.5 V

 8. (a) − 2.31 kV  (b) Protons would require a greater potential difference.

 (c) ΔVp ΔVe = − mp me

10. 40.2 kV

12. (a) +5.39 kV (b) +10.8 kV

14. −9.08 J

16. (a) See Solution. (b) 3keq a   (c) See Solution.

18. (a) See Solution. (b) V = 22.5 V ⋅ m( ) 1

1.20 m − x
− 2

x
⎛
⎝⎜

⎞
⎠⎟

(c) −37.5 V  (d) x = 0.800 m

20. (a) Conservation of energy alone yields one equation with two unknowns.

(b) Conservation of linear momentum

(c) vp = 1.05 × 10
7
 m s ,  vα = 2.64 × 10

6
 m s

22. 5.4 × 10
5
 V

24. (a) V = 4 2keQ a  (b) W = 4 2keqQ a

26. (a) 3.00 mF   (b) 36.0 mC

28. (a) 1.00 mF  (b) 100 V

30. 31.0 Å

32. 1.23 kV
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34. (a) 17.0 mF  (b) 9.00 V

(c) 45.0 mC on C1, 108 mC on C2

36. 3.00 pF and 6.00 pF

38. (a) 6.00 mF  (b) 12.0 mF  (c) 432 mC

(d) Q4 = 144 mC, Q2 = 72.0 mC, Qrightmost
branch

= 216 mC  (e) Q24 = Q8 = 216 mC

(f) 9.00 V (g) 27.0 V

40. (a) 2C  (b) Q1 > Q3 > Q2  (c) ΔV1 > ΔV2 = ΔV3

(d) Q1  and Q3  increase, Q2  decreases

42. (a) 6.04 mF  (b) 83.6 mC

44. (a) 5.96 mF

(b)  89.4 mC on the 20.0 mF capacitor, 63.0 mC on the 6.00 mF capacitor, 

26.3 mC on the 15.0 mF capacitor, and 26.3 mC on the 3.00 mF capacitor

46. (a) Ceq = 12.0 mF, Estored,total = 8.64 ×10
−4

 J

(b) Estored,1 = 5.76 × 10
−4

 J, Estored,2 = 2.88 × 10
−4

 J

It will always be true that Estored,1 + Estored,2 = Estored,total.

(c) 5.66 V; C2 ,  with the largest capacitance, stores the most energy.

48. 9.79 kg

50. (a) 13.3 nC  (b) 272 nC

52. 1.04 m

54. 0.443 mm

56. (a) 13.5 mJ

(b) Estored,2 = 3.60  mJ, Estored,3 = 5.40  mJ, Estored,4 = 1.80  mJ, Estored,6 = 2.70  mJ

(c)  The energy stored in the equivalent capacitance equals the sum of the energies stored in the 

individual capacitors.

58. C1 = 1

2
Cp ± 1

4
Cp

2 − CpCs , C2 = 1

2
Cp ∓

1

4
Cp

2 − CpCs

60. (a) 1.8 × 10
4
 V  (b) −3.6 × 10

4
 V  (c) −1.8 × 10

4
 V

(d) −5.4 × 10
−2

 J

62. (a) C = ab

ke b − a( )  (b) See Solution.
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64. k = 2.33

66. (a) 
2keq

d 5
 (b) 

4keq
2

d 5
  (c) 

4keq
2

d 5

(d)
8keq

2

md 5

68. (a) 0.1 mm (b) 4.4 mm

PROBLEM SOLUTIONS

16.1 (a)  Because the electron has a negative charge, it experiences a force in the direction opposite 

to the fi eld and, when released from rest, will move in the negative x-direction. The work 

done on the electron by the fi eld is

W = Fx Δx( ) = qEx( ) Δx = −1.60 × 10
−19

 C( ) 375 N C( ) −3.20 × 10
−2

 m( )
= 1.92 × 10

−18
 J

 (b)  The change in the electric potential energy is the negative of the work done on the particle 

by the fi eld. Thus,

ΔPE = −W = −1.92 × 10
−18

 J

 (c)  Since the Coulomb force is a conservative force, conservation of energy gives 

ΔKE + ΔPE = 0, or KE f = 1
2 mev f

2 = KEi − ΔPE = 0 − ΔPE, and

v f = −2 ΔPE( )
me

=
−2 −1.92 ×10

−18
 J( )

9.11×10
−31

 kg
= 2.05 ×10

6
 m s  in the −x-direction

16.2 (a) F = qE = 1.60 × 10
−19

 C( ) 385 N C( ) = 6.16 × 10
−17

 N

 (b) a = F

mp

= 6.16 × 10
−17

 N

1.67 × 10
−27

 kg
= 3.69 × 10

10
 m s

2
 in the direction of the electric field

 (c) Δx = v0t + 1

2
at2 = 0 + 1

2
3.69 × 10

10
 m s

2( ) 2.00 × 10
−6

 s( )2

= 7.38 × 10
−2

 m = 7.38 cm

16.3 The work done by the agent moving the charge out of the cell is

Winput = −Wfield = − −ΔPEe( ) = +q ΔV( )

= 1.60 × 10
−19

 C( ) + 90 × 10
−3

 J C( ) = 1.4 × 10
−20

 J

16.4 Assuming the sphere is isolated, the excess charge on it is uniformly distributed over its surface. 

Under this spherical symmetry, the electric fi eld outside the sphere is the same as if all the excess 

charge on the sphere were concentrated as a point charge located at the center of the sphere.

continued on next page
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 Thus, at r = 8.00 cm > Rsphere = 5.00 cm, the electric fi eld is E = ke Q r 2. The required charge 

then has magnitude Q = Er 2 ke, and the number of electrons needed is

   n =
Q

e
= Er 2

kee
=

1.50 × 10
5
 N C( ) 8.00 × 10

−2
 m( )2

8.99 × 10
9
 N ⋅ m

2
C

2( ) 1.60 × 10
−19

 C( ) = 6.67 × 10
11

 electrons

16.5 E = ΔV

d
= 25 × 10

3
 J C

1.5 × 10
−2

 m
= 1.7 × 10

6
 N C

16.6 (a) F = qE = +40.0 × 10
−6

 C( ) +275 N C( ) = 1.10 × 10
−2

 N directed toward the right

 (b) WAB = F Δx( )cosq = 1.10 ×10
−2

 N( ) 0.180 m( )cos0° = 1.98 ×10
−3

 J

 (c) ΔPE = −WAB = −1.98 × 10
−3

 J

 (d) ΔV = VB − VA = ΔPE

q
= −1.98 × 10

−3
 J

+40.0 × 10
−6

 C
= − 49.5 V

16.7 (a) E = ΔV

d
= 600 J C

5.33 × 10
−3

 m
= 1.13 × 10

5
 N C

 (b) F = q E =
q ΔV

d
=

1.60 × 10
−19

 C( ) 600 J C( )
5.33 × 10

−3
 m

= 1.80 × 10
−14

 N

 (c) W = F ⋅ s cosq

= 1.80 × 10
−14

 N( ) 5.33 − 2.90( ) × 10
−3

 m⎡⎣ ⎤⎦ cos 0° = 4.37 × 10
−17

 J

16.8 (a)  Using conservation of energy, ΔKE + ΔPE = 0, with KE f = 0 since the particle is “stopped,” 

we have

ΔPE = −ΔKE = − 0 − 1

2
mevi

2⎛
⎝⎜

⎞
⎠⎟ = + 1

2
9.11× 10

−31
 kg( ) 2.85 × 10

7
 m s( )2

= +3.70 × 10
−16

 J

  The required stopping potential is then

ΔV = ΔPE

q
= +3.70 × 10

−16
 J

−1.60 × 10
−19

 C
= −2.31× 10

3
 V = −2.31 kV

 (b)  Being more massive than electrons, protons traveling at the same initial speed will have 

more initial kinetic energy and require a greater magnitude stopping potential .

 (c)  Since ΔVstopping = ΔPE q = −ΔKE( ) q = − mv2
2( ) q, the ratio of the stopping potential for a 

proton to that for an electron having the same initial speed is

ΔVp

ΔVe

=
− mpvi

2
2(+e)

− mevi
2

2(−e)
= − mp me
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16.9 (a)  We use conservation of energy, 

Δ KE( ) + Δ PEs( ) + Δ PEe( ) = 0, recognizing 

that Δ(KE) = 0 since the block is at rest at 

both the beginning and end of the motion. 

The change in the elastic potential energy is 

given by Δ PEs( ) = 1
2 kxmax

2 − 0, where xmax 

is the maximum stretch of the spring. The 

change in the electrical potential energy 

is the negative of the work the electric fi eld does, Δ PEe( ) = −W = −Fe (Δx) = − QE( ) xmax. 

Thus, 0 + 1
2 kxmax

2 − QE( ) xmax = 0, which yields

xmax = 2QE

k
=

2 35.0 × 10
−6

 C( ) 4.86 × 10
4
 V m( )

78.0 N m
= 4.36 × 10

−2
 m = 4.36 cm

 (b) At equilibrium, ΣF = Fs + Fe = 0,  or − kxeq + QE = 0. Therefore,

    xeq = QE

k
= 1

2
xmax = 2.18 cm

   The amplitude is the distance from the equilibrium position to each of the turning points 

at x = 0 and x = 4.36 cm( ), so A = 2.18 cm = xmax 2 .

 (c)  From conservation of energy, Δ KE( ) + Δ PEs( ) + Δ PEe( ) = 0, we have 0 + 1
2 kxmax

2 + QΔV = 0. 

Since xmax = 2A, this gives

ΔV = −
kxmax

2

2Q
= − k 2A( )2

2Q
  or  ΔV = − 2kA2

Q

16.10 Using Δy = v0 yt + 1
2 ayt

2
 for the full fl ight gives 0 = v0 yt f + 1

2 ayt f
2
, or ay = −2v0 y t f , where t f  is 

the full time of the fl ight. Then, using vy
2 = v0 y

2 + 2ay (Δy) for the upward part of the fl ight gives

   Δy( )
max

=
0 − v0 y

2

2ay

=
−v0 y

2

2 −2 v0 y t f( ) =
v0 yt f

4
=

20.1 m s( ) 4.10 s( )
4

= 20.6 m

 From Newton’s second law,

ay =
ΣFy

m
= −mg − qE

m
= − g + qE

m
⎛
⎝⎜

⎞
⎠⎟

 Equating this to the earlier result gives ay = − g + qE m( ) = −2v0 y t f , so the electric fi eld 

strength is

   E = m

q

⎛
⎝⎜

⎞
⎠⎟

2v0 y

t f

− g
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 2.00 kg

5.00 ×10
−6

 C

⎛
⎝⎜

⎞
⎠⎟

2 20.1 m s( )
4.10 s

− 9.80 m s
2⎡

⎣
⎢

⎤

⎦
⎥ = 1.95 ×10

3
 N C

 Thus, ΔV( )
max

= Δymax( ) E = 20.6 m( ) 1.95 × 10
3
 N C( ) = 4.02 × 10

4
 V = 40.2 kV

16.11 (a) VA =
keq

rA

=
8.99 × 10

9
 N ⋅ m

2
C

2( ) −1.60 × 10
−19

 C( )
0.250 × 10

−2
 m

= −5.75 × 10
−7

 V

 (b) VB =
keq

rB

=
8.99 × 10

9
 N ⋅ m

2
C

2( ) −1.60 × 10
−19

 C( )
0.750 × 10

−2
 m

= −1.92 × 10
−7

 V

continued on next page
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ΔV = VB − VA = −1.92 × 10
−7

 V − −5.75 × 10
−7

 V( ) = +3.83 × 10
−7

 V

 (c)  No . The original electron will be repelled by the negatively charged particle which sud-

denly appears at point A. Unless the electron is fi xed in place, it will move in the opposite 

direction, away from points A and B, thereby lowering the potential difference between 

these points.

16.12 (a) VA =
keqi

rii
∑ = 8.99 × 10

9
 N ⋅ m

2
C

2( ) −15.0 × 10
−9

 C

2.00 × 10
−2

 m
+ 27.0 × 10

−9
 C

2.00 × 10
−2

 m

⎛
⎝⎜

⎞
⎠⎟

= +5.39 kV

 (b) VB =
keqi

rii
∑ = 8.99 × 10

9
 N ⋅ m

2
C

2( ) −15.0 × 10
−9

 C

1.00 × 10
−2

 m
+ 27.0 × 10

−9
 C

1.00 × 10
−2

 m

⎛
⎝⎜

⎞
⎠⎟

= +10.8 kV

16.13 (a) Calling the 2.00 mC charge q3,

  

V =
keqi

rii
∑ = ke

q1

r1

+ q2

r2

+
q3

r1

2 + r2

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= 8.99 × 10
9
 

N ⋅ m
2

C
2

⎛
⎝⎜

⎞
⎠⎟

8.00 × 10
−6

 C

0.060 0 m
+ 4.00 × 10

−6
 C

0.030 0 m
+ 2.00 × 10

−6
 C

0.060 0( )2 + 0.030 0( )2
 m

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

V = 2.67 × 10
6
 V

 (b) Replacing 2.00 × 10
−6

 C by − 2.00 × 10
−6

 C in part (a) yields

V = 2.13 × 10
6
 V

16.14 W = q ΔV( ) = q Vf − Vi( ), and Vf = 0 since the fi nal location of the 8.00 mC is an infi nite dis-
tance from other charges. The potential, due to the other charges, at the initial location of 
the 8.00 mC is Vi = ke q1 r1 + q2 r2( ). Thus, the required energy for the move is

   

W = q 0 − ke

q1

r1

+ q2

r2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= − 8.00 × 10
−6

 C( ) 8.99 × 10
9
 

N ⋅ m
2

C
2

⎛
⎝⎜

⎞
⎠⎟

2.00 × 10
−6

 C

0.030 0 m
+ 4.00 × 10

−6
 C

0.030 0( )2 + 0.060 0( )2
 m

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

W = − 9.08 J

16.15 (a) V =
ke qi

rii
∑ = 8.99 × 10

9
 

N ⋅ m
2

C
2

⎛
⎝⎜

⎞
⎠⎟

5.00 × 10
−9

 C

0.175 m
− 3.00 × 10

−9
 C

0.175 m

⎛
⎝⎜

⎞
⎠⎟

= 103 V

 (b) PE =
keqiq2

r12

= 8.99 × 10
9
 

N ⋅ m
2

C
2

⎛
⎝⎜

⎞
⎠⎟

5.00 × 10
−9

 C( ) − 3.00 × 10
−9

 C( )
0.350 m

= − 3.85 × 10
− 7

 J

   The negative sign means that positive work must be done  to separate the charges by an 

infi nite distance (that is, bring them up to a state of zero potential energy).
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16.16 (a)  At the center of the triangle, each of the identical 

charges produce a fi eld contribution of magnitude 

E1 = keq a2
. The three contributions are oriented 

as shown at the right and the components of the 

resultant fi eld are:

Ex = ΣEx = +E1 cos30° − E1 cos30° = 0

Ey = ΣEy = +E1 sin 30° − E1 + E1 sin 30° = 0

  Thus, the resultant fi eld has magnitude

E = Ex
2 + Ey

2 = 0

 (b) The total potential at the center of the triangle is

V = ΣVi = Σ keqi

ri

=
keq

a
+

keq

a
+

keq

a
=

3keq

a

 (c)  Imagine a test charge placed at the center of the triangle. Since the fi eld is zero at the center, 

the test charge will experience no electrical force at that point. The fact that the potential is 

not zero at the center means that work would have to be done by an external agent to move 

a test charge from infi nity to the center.

16.17 The Pythagorean theorem gives the distance from the midpoint of the base to the charge at the 

apex of the triangle as

r3 = 4.00 cm( )2 − 1.00 cm( )2 = 15  cm = 15 × 10
−2

 m

 Then, the potential at the midpoint of the base is V = keqi ri
i

∑ , or

V = 8.99 × 10
9
 

N ⋅ m
2

C
2

⎛
⎝⎜

⎞
⎠⎟

−7.00 × 10
−9

 C( )
0.010 0 m

+
−7.00 × 10

−9
 C( )

0.010 0 m
+

+7.00 × 10
−9

 C( )
15 × 10

−2
 m

⎛

⎝
⎜

⎞

⎠
⎟

= −1.10 × 10
4
 V = − 11.0 kV

16.18 (a) See the sketch below:

�1000

�500

�1.2 0

500

1000

21.61.20.80.4�0.4�0.8

y

x

E1

y

x

E1

E1

30°30°

continued on next page
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 (b) At the point (x, 0), where 0 < x < 1.20 m, the potential is

V =
keqi

rii
∑ =

ke −2q( )
x

+
keq

1.20 m − x
= keq

1

1.20 m − x
− 2

x
⎛
⎝⎜

⎞
⎠⎟

   or

V = 8.99 × 10
9
 

N ⋅ m
2

C
2

⎛
⎝⎜

⎞
⎠⎟

2.50 × 10
−9

 C( ) 1

1.20 m − x
− 2

x
⎛
⎝⎜

⎞
⎠⎟ = 22.5 V ⋅ m( ) 1

1.20 m − x
− 2

x
⎛
⎝⎜

⎞
⎠⎟

 (c) At x = + 0.600 m, the potential is

V = 22.5 V ⋅ m( ) 1

1.20 m − 0.600 m
− 2

0.600 m

⎛
⎝⎜

⎞
⎠⎟ = − 22.5 V ⋅ m

0.600 m
= −37.5 V

 (d) When 0 < x < 1.20 m and V = 0, we have 1 (1.20 m − x) − 2 x = 0, or x = 2.40 m − 2x.

  This yields x = 2.40 m 3 = 0.800 m .

16.19 (a)  When the charge confi guration consists of only the 

two protons q1  and q2  in the sketch( ), the potential 

energy of the confi guration is

PEa =
keq1q2

r12

=
8.99 × 10

9
 N ⋅ m

2
C

2( ) 1.60 × 10
−19

 C( )2

6.00 × 10
−15

 m

  or PEa = 3.84 × 10
−14

 J

(b)  When the alpha particle q3  in the sketch( ) is added to the confi guration, there are three dis-

tinct pairs of particles, each of which possesses potential energy. The total potential energy 

of the confi guration is now

    PEb =
keq1q2

r12

+
keq1q3

r13

+
keq2q3

r23

= PEa + 2
ke 2e2( )

r13

⎛

⎝
⎜

⎞

⎠
⎟

   where use has been made of the facts that q1q3 = q2q3 = e 2e( ) = 2e2
 and 

r13 = r23 = 3.00 fm( )2 + 3.00 fm( )2 = 18.0  fm = 18.0 × 10
−15

 m. Also, note that the fi rst 

term in this computation is just the potential energy computed in part (a). Thus,

    

PEb = PEa +
4kee

2

r13

= 3.84 × 10
−14

 J +
4 8.99 × 10

9
 N ⋅ m

2
C

2( ) 1.60 × 10
−19

 C( )2

18.0 × 10
−15

 m
= 2.55 × 10

−13
 J

 (c)  If we start with the three-particle system of part (b) and allow the alpha particle to escape to 

infi nity [thereby returning us to the two-particle system of part (a)], the change in electric 

potential energy will be

ΔPE = PEa − PEb = 3.84 × 10
−14

 J − 2.55 × 10
−13

 J = −2.17 × 10
−13

 J

 (d)  Conservation of energy, ΔKE + ΔPE = 0, gives the speed of the alpha particle at infi nity in 

the situation of part (c) as 1
2 ma va

2 − 0 = −ΔPE , or

continued on next page
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va = −2 ΔPE( )
ma

=
−2 −2.17 ×10

−13
 J( )

6.64 ×10
−27

 kg
= 8.08 ×10

6
 m s

 (e)  When, starting with the three-particle system, the two protons are both allowed to escape 

to infi nity, there will be no remaining pairs of particles and hence no remaining poten-

tial  energy. Thus, ΔPE = 0 − PEb = −PEb, and conservation of energy gives the change 

in  kinetic energy as ΔKE = −ΔPE = +PEb. Since the protons are identical particles, this 

increase in kinetic energy is split equally between them giving KEproton = 1
2 mpvp

2 = 1
2 PEb( ),

  or 

 

vp =
PEb

mp

= 2.55 ×10
−13

 J

1.67 ×10
−27

 kg
= 1.24 ×10

7
 m s

16.20 (a)  If a proton and an alpha particle, initially at rest 4.00 fm apart, are released and allowed to 

recede to infi nity, the fi nal speeds of the two particles will differ because of the difference 

in the masses of the particles. Thus, attempting to solve for the fi nal speeds by use of con-

servation of energy alone leads to a situation of having one equation with two unknowns , 

and does not permit a solution.

(b)  In the situation described in part (a) above, one can obtain a second equation with the two 

unknown fi nal speeds by using conservation of linear momentum.  Then, one would have 

two equations which could be solved simultaneously for both unknowns.

 (c) From conservation of energy: 1
2 ma va

2 + 1
2 mpvp

2( ) − 0⎡
⎣

⎤
⎦ + 0 − keqa qp ri⎡⎣ ⎤⎦ = 0, or

    ma va
2 + mpvp

2 =
2keqa qp

ri

=
2 8.99 ×10

9
 N ⋅m2

C
2( ) 3.20 ×10

−19
 C( ) 1.60 ×10

−19
 C( )

4.00 ×10
−15

 m

  yielding ma va
2 + mpvp

2 = 2.30 ×10
−13

 J  [1]

  From conservation of linear momentum,

    ma va + mpvp = 0   or  

 
va =

mp

ma

⎛
⎝⎜

⎞
⎠⎟

vp  [2]

  Substituting Equation [2] into Equation [1] gives

    ma
mp

ma

⎛
⎝⎜

⎞
⎠⎟

2

vp
2 + mpvp

2 = 2.30 ×10
−13

 J  or 

 

mp

ma
+1

⎛
⎝⎜

⎞
⎠⎟

mpvp
2 = 2.30 ×10

−13
 J

  and

vp = 2.30 ×10
−13

 J

mp ma +1( )mp

= 2.30 ×10
−13

 J

1.67 ×10
−27

6.64 ×10
−27

+1( ) 1.67 ×10
−27

 kg( ) = 1.05 ×10
7
 m s

  Then, Equation [2] gives the fi nal speed of the alpha particle as

va =
mp

ma

⎛
⎝⎜

⎞
⎠⎟

vp = 1.67 ×10
−27

 kg

6.64 ×10
−27

 kg

⎛
⎝⎜

⎞
⎠⎟

1.05 ×10
7
 m s( ) = 2.64 ×10

6
 m s
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16.21 (a) Conservation of energy gives

KE f = KEi + PEi − PE f( ) = 0 + keq1q2

1

ri

− 1

rf

⎛

⎝
⎜

⎞

⎠
⎟

  With q1 = +8.50 nC, q2 = −2.80 nC, ri = 1.60 mm, and rf = 0.500 mm, this becomes

KE f = 8.99 × 10
9
 

N ⋅ m
2

C
2

⎛
⎝⎜

⎞
⎠⎟

8.50 × 10
−9

 C( ) −2.80 × 10
−9

 C( ) 1

1.60 × 10
−6

 m
− 1

0.500 × 10
−6

 m

⎛
⎝⎜

⎞
⎠⎟

  yielding KE f = 0.294 J

(b)  When r = rf = 0.500 mm  and KE = KE f = 0.294 J, the speed of the sphere having mass 

m = 8.00 mg = 8.00 × 10
−6

 kg is

v f =
2 KE f( )

m
= 2 0.294 J( )

8.00 × 10
−6

 kg
= 271 m s

16.22 The excess charge on the metal sphere will be uniformly distributed over its surface. In this 

spherically symmetric situation, the electric fi eld and the electric potential outside the sphere 

is the same as if all the excess charge were concentrated as a point charge at the center of the 

sphere. Thus, for points outside the sphere,

E = ke

Q

r 2
  and  V = ke

Q

r
= E ⋅ r

 If the sphere has a radius of r = 18 cm = 0.18 m and the air breaks down when E = 3.0 × 10
6
 V m, 

the electric potential at the surface of the sphere when breakdown occurs is

   V = 3.0 × 10
6
 V m( ) 0.18 m( ) = 5.4 × 10

5
 V

16.23 From conservation of energy, KE + PEe( ) f
= KE + PEe( )i

, which gives 

0 + keQq rf = 1
2 ma vi

2 + 0, or

   rf =
2 keQq

ma vi
2

=
2 ke 79e( ) 2e( )

ma vi
2

rf =
2 8.99 × 10

9
 N ⋅ m

2
C

2( ) 158( ) 1.60 × 10
−19

 C( )2

6.64 × 10
−27

 kg( ) 2.00 × 10
7
 m s( )2 = 2.74 × 10

−14
 m

16.24 (a)  The distance from any one of the corners of the square to the point at the center is one half 

the length of the diagonal of the square, or

r = diagonal

2
= a2 + a2

2
= a 2

2
= a

2

   Since the charges have equal magnitudes and are all the same distance from the center of 

the square, they make equal contributions to the total potential. Thus,

Vtotal = 4Vsingle
charge

= 4
keQ

r
= 4

keQ

a 2
= 4 2ke

Q

a

continued on next page
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 (b)  The work required to carry charge q from infi nity to the point at the center of the square is 

equal to the increase in the electric potential energy of the charge, or

    W = PEcenter − PE∞ = qVtotal − 0 = q 4 2ke

Q

a
⎛
⎝⎜

⎞
⎠⎟ = 4 2ke

qQ

a

16.25 (a) C = ∈0

A

d
= 8.85 × 10

−12
 

C
2

N ⋅ m
2

⎛
⎝⎜

⎞
⎠⎟

1.0 × 10
6
 m

2( )
800 m( ) = 1.1× 10

−8
 F

 (b) Qmax = C ΔV( )
max

= C Emaxd( ) = ∈0

A

d
Emax d( ) = ∈0 AEmax

= 8.85 ×10
−12

 C
2

N ⋅m2( ) 1.0 ×10
6
 m

2( ) 3.0 ×10
6
 N C( ) = 27 C

16.26 (a) C = Q

ΔV
= 27.0 mC

9.00 V
= 3.00 mF

(b) Q = C ΔV( ) = 3.00 mF( ) 12.0 V( ) = 36.0 mC

16.27 (a) The capacitance of this air-fi lled dielectric constant, k = 1.00( ) parallel-plate capacitor is

  C =
k ∈0 A

d
=

1.00( ) 8.85 × 10
−12

 C
2

N ⋅ m
2( ) 2.30 × 10

−4
 m

2( )
1.50 × 10

−3
 m

= 1.36 × 10
−12

 F = 1.36 pF

(b) Q = C ΔV( ) = 1.36 × 10
−12

 F( ) 12.0 V( ) = 1.63 × 10
−11

 C = 16.3 × 10
−12

 C = 16.3 pC

 (c) E = ΔV

d
= 12.0 V

1.50 × 10
−3

 m
= 8.00 × 10

3
 V m = 8.00 × 10

3
 N C

16.28 (a) C = Q

V
= 10.0 mC

10.0 V
= 1.00 mF

(b) V = Q

C
= 100 mC

1.00 mF
= 100 V

16.29 (a) E = ΔV

d
= 20.0 V

1.80 × 10
−3

 m
= 1.11× 10

4
 V m = 11.1 kV m  toward the negative plate

 (b) C =
∈0 A

d
=

8.85 × 10
−12

 C
2

N ⋅ m
2( ) 7.60 × 10

−4
 m

2( )
1.80 × 10

−3
 m

= 3.74 × 10
−12

 F = 3.74 pF

 (c)  Q = C ΔV( ) = 3.74 × 10
−12

 F( ) 20.0 V( ) = 7.48 × 10
−11

 C = 74.8 pC  on one plate and 

−74.8 pC  on the other plate.

16.30 C = ∈0 A d, so

d =
∈0 A

C
=

8.85 ×10
−12

 C
2

N ⋅m2( ) 21.0 ×10
−12

 m
2( )

60.0 ×10
−15

 F
= 3.10 ×10

−9
m

d = 3.10 ×10
−9

m( ) 1 Å

10
−10

 m

⎛
⎝⎜

⎞
⎠⎟

= 31.0 Å
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16.31 (a) Assuming the capacitor is air-fi lled k = 1( ), the capacitance is

    C =
∈0 A

d
=

8.85 × 10
−12

 C
2

N ⋅ m
2( ) 0.200 m

2( )
3.00 × 10

−3
 m

= 5.90 × 10
−10

 F

 (b) Q = C ΔV( ) = 5.90 × 10
−10

 F( ) 6.00 V( ) = 3.54 × 10
−9

 C

 (c) E = ΔV

d
= 6.00 V

3.00 × 10
−3

 m
= 2.00 × 10

3
 V m = 2.00 × 10

3
 N C

 (d) s = Q

A
= 3.54 ×10

−9
 C

0.200 m
2

= 1.77 ×10
−8

 C m
2

 (e)  Increasing the distance separating the plates decreases the capacitance, the charge 

stored, and the electric fi eld strength between the plates. This means that all of the 

previous answers will be decreased .

16.32 ΣFy = 0 ⇒  T cos15.0° = mg   or   T = mg

cos15.0°

ΣFx = 0 ⇒ qE = T sin15.0° = mg tan15.0°

 or E = mg tan15.0°
q

ΔV = Ed = mgd tan15.0°
q

ΔV =
350 × 10

−6
 kg( ) 9.80 m s

2( ) 0.040 0 m( ) tan15.0°
30.0 × 10

−9
 C

= 1.23 × 10
3
 V = 1.23 kV

16.33 (a)  Capacitors in a series combination store the same charge, Q = Ceq (ΔV ), where Ceq is the 

equivalent capacitance and ΔV  is the potential difference maintained across the series com-

bination. The equivalent capacitance for the given series combination is 1 Ceq = 1 C1 + 1 C2, 

or Ceq = C1C2 (C1 + C2 ), giving

    Ceq =
2.50 mF( ) 6.25 mF( )
2.50 mF + 6.25 mF

= 1.79 mF

  and the charge stored on each capacitor in the series combination is

Q = Ceq ΔV( ) = 1.79 mF( ) 6.00 V( ) = 10.7 mC

 (b)  When connected in parallel, each capacitor has the same potential difference, ΔV = 6.00 V, 

maintained across it. The charge stored on each capacitor is then

  For C1 = 2.50 mF:  Q1 = C1 ΔV( ) = 2.50 mF( ) 6.00 V( ) = 15.0 mC

  For C2 = 6.25 mF:  Q2 = C2 ΔV( ) = 6.25 mF( ) 6.00 V( ) = 37.5 mC
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16.34 (a) Ceq = C1 + C2 = 5.00 mF +12.0 mF = 17.0 mF

(b)  In a parallel combination, the full potential difference maintained between the terminals of 

the battery exists across each capacitor. Thus,

ΔV1 = ΔV2 = ΔVbattery = 9.00 V

 (c) Q1 = C1 ΔV1( ) = 5.00 mF( ) 9.00 V( ) = 45.0 mC

Q2 = C2 ΔV2( ) = 12.0 mF( ) 9.00 V( ) = 108 mC

16.35 (a) First, we replace the parallel combination

 between points b and c by its equivalent

 capacitance, Cbc = 2.00 mF + 6.00 mF = 8.00 mF.

  Then, we have three capacitors in series

 between points a and d. The equivalent

 capacitance for this circuit is therefore

1

Ceq

= 1

Cab

+ 1

Cbc

+ 1

Ccd

= 3

8.00 mF

giving Ceq = 8.00 mF

3
= 2.67 mF

 (b) The charge stored on each capacitor in the series combination is

Qab = Qbc = Qcd = Ceq ΔVad( ) = 2.67 mF( ) 9.00 V( ) = 24.0 mC

   Then, note that ΔVbc = Qbc Cbc = 24.0 mC 8.00 mF = 3.00 V. The charge on each capacitor 

in the original circuit is:

  On the 8.00 mF between a and b: Q8 = Qab = 24.0 mC

  On the 8.00 mF between c and d: Q8 = Qcd = 24.0 mC

  On the 2.00 mF  between b and c: Q2 = C2 ΔVbc( ) = 2.00 mF( ) 3.00 V( ) = 6.00 mC

  On the 6.00 mF between b and c: Q6 = C6 ΔVbc( ) = 6.00 mF( ) 3.00 V( ) = 18.0 mC

 (c)  Note that ΔVab = Qab Cab = 24.0 mC 8.00 mF = 3.00 V, and that 

ΔVcd = Qcd Ccd = 24.0 mC 8.00 mF = 3.00 V. We earlier found that ΔVbc = 3.00 V, so we 

conclude that the potential difference across each capacitor in the circuit is

    ΔV8 = ΔV2 = ΔV6 = ΔV8 = 3.00 V

16.36 Cparallel = C1 + C2 = 9.00 pF   ⇒    C1 = 9.00 pF − C2 [1]

 
1

Cseries

= 1

C1

+ 1

C2

   ⇒    Cseries = C1C2

C1 + C2

= 2.00 pF

 Thus, using Equation [1],  Cseries =
9.00 pF − C2( )C2

9.00 pF − C2( ) + C2

= 2.00 pF which reduces to

continued on next page
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C2

2 − 9.00 pF( )C2 + 18.0 pF( )2 = 0 , or C
2

− 6.00 pF( ) C
2

− 3.00 pF( ) = 0

 Therefore, either C
2

= 6.00 pF and, from Equation [1], C
1

= 3.00 pF

 or C
2

= 3.00 pF and C
1

= 6.00 pF.

 We conclude that the two capacitances are 3.00 pF and 6.00 pF .

16.37 (a)  The equivalent capacitance of the series combination in the 

upper branch is 

    
1

C
upper

= 1

3.00 mF
+ 1

6.00 mF
= 2 +1

6.00 mF

  or C
upper

= 2.00 mF

   Likewise, the equivalent capacitance of the series combina-

tion in the lower branch is

1

C
lower

= 1

2.00 mF
+ 1

4.00 mF
= 2 +1

4.00 mF
 or C

lower
= 1.33 mF

   These two equivalent capacitances are connected in parallel with each other, so the equiva-

lent capacitance for the entire circuit is

C
eq

= C
upper

+ C
lower

= 2.00 mF +1.33 mF = 3.33 mF

 (b)  Note that the same potential difference, equal to the potential difference of the battery, 

exists across both the upper and lower branches. The charge stored on each capacitor in the 

series combination in the upper branch is

Q
3

= Q
6

= Q
upper

= C
upper

ΔV( ) = 2.00 mF( ) 90.0 V( ) = 180 mC

  and the charge stored on each capacitor in the series combination in the lower branch is

Q
2

= Q
4

= Q
lower

= C
lower

ΔV( ) = 1.33 mF( ) 90.0 V( ) = 120 mC

 (c) The potential difference across each of the capacitors in the circuit is:

ΔV
2

= Q
2

C
2

= 120 mC

2.00 mF
= 60.0 V ΔV

4
= Q

4

C
4

= 120 mC

4.00 mF
= 30.0 V

ΔV
3

=
Q

3

C
3

= 180 mC

3.00 mF
= 60.0 V ΔV

6
=

Q
6

C
6

= 180 mC

6.00 mF
= 30.0 V

16.38 (a)  The equivalent capacitance of the series 

combination in the rightmost branch of 

the circuit is

1

C
right

= 1

24.0 mF
+ 1

8.00 mF
= 1+ 3

24.0 mF

  or C
right

= 6.00 mF

3.00 mF 6.00 mF

2.00 mF

90.0 V

4.00 mF

Figure P16.38

continued on next page
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 (b)  The equivalent capacitance of the three 

capacitors now connected in parallel with 

each other and with the battery is

C
eq

= 4.00 mF + 2.00 mF + 6.00 mF = 12.0 mF

 (c) The total charge stored in this circuit is

Q
total

= C
eq

ΔV( ) = 12.0 mF( ) 36.0 V( )

  or  Q
total

= 432 mC

 (d) The charges on the three capacitors shown in Diagram 1 are:

Q
4

= C
4

ΔV( ) = 4.00 mF( ) 36.0 V( ) = 144 mC

Q
2

= C
2

ΔV( ) = 2.00 mF( ) 36.0 V( ) = 72 mC

Q
right

= C
right

ΔV( ) = 6.00 mF( ) 36.0 V( ) = 216 mC

Yes.  Q
4

+ Q
2

+ Q
right

= Q
total

 as it should.

 (e)  The charge on each capacitor in the series combination in the rightmost branch of the origi-

nal circuit (Figure P16.38) is

Q
24

= Q
8

= Q
right

= 216 mC

 (f) ΔV
24

= Q
24

C
24

= 216 mC

24.0 mF
= 9.00 V

 (g) ΔV
8

=
Q

8

C
8

= 216 mC

8.00 mF
= 27.0 V  Note that ΔV

8
+ ΔV

24
= ΔV = 36.0 V as it should.

16.39

The circuit may be reduced in steps as shown above.

 Using Figure 3, Qac = 4.00 mF( ) 24.0 V( ) = 96.0 mC

 Then, in Figure 2, ΔV( )
ab

=
Qac

Cab

= 96.0 mC

6.00 mF 
= 16.0 V

Diagram 1

Diagram 2

continued on next page
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 and ΔV( )
bc

= ΔV( )
ac

− ΔV( )
ab

= 24.0 V −16.0 V = 8.00 V

 Finally, using Figure 1,

Q
1

= C
1

ΔV( )
ab

= 1.00 mF( ) 16.0 V( ) = 16.0 mC , Q
5

= 5.00 mF( ) ΔV( )
ab

= 80.0 mC

Q
8

= 8.00 mF( ) ΔV( )
bc

= 64.0 mC , and Q
4

= 4.00 mF( ) ΔV( )
bc

= 32.0 mC

16.40 (a) Consider the simplifi cation of the circuit as shown below:

C1
a

b

ΔV
+
−

Cab ΔV
+
−

Ceq

C1
a

b

ΔV
+
−

C2 C3

  Since C
2
 and C

3
 are connected in parallel, C

ab
= C

2
+ C

3
= C + 5C = 6C.

  Now observe that C
1
 and C

ab
 are connected in series, giving

1

C
eq

= 1

C
1

+ 1

C
ab

 or C
eq

=
C

1
C

ab

C
1

+ C
ab

= 3C( ) 6C( )
3C + 6C

= 2C

 (b) Since capacitors C
1
 and C

ab
 are connected in series,

Q
1

= Q
ab

= Q
eq

= C
eq

ΔV( ) = 2C ΔV( )

  Then, ΔV
ab

=
Q

ab

C
ab

= 2C ΔV( )
6C

= ΔV

3
, giving Q

2
= C

2
ΔV

ab( ) = C ΔV( )
3

  Also, Q
3

= C
3

ΔV
ab( ) = 5C ΔV( )

3
. Therefore, Q

1
> Q

3
> Q

2

 (c) Since capacitors C
1
 and C

ab
 are in series with the battery,

ΔV
1

= ΔV − ΔV
ab

= ΔV − ΔV

3
= 2

3
ΔV

  Also, with capacitors C
2
 and C

3
 in parallel between points a and b,

ΔV
2

= ΔV
3

= ΔV
ab

= ΔV

3

  Thus, ΔV
1

> ΔV
2

= ΔV
3

 (d) Consider the following steps:

  (i) Increasing C
3
 while C

1
 and C

2
 remain constant will increase C

ab
= C

2
+ C

3
.

    Therefore, the equivalent capacitance, C
eq

= C
1

C
ab

C
1

+ C
ab

⎛
⎝⎜

⎞
⎠⎟
, will increase.

continued on next page
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  (ii)   Since C
1
 and C

ab
 are in series, Q

1
= Q

ab
= C

eq
ΔV( ). Thus, Q

1
 will increase  as C

eq
 

increases. Also, Q
ab

 experiences the same increase.

  (iii)  Because ΔV
1

= Q
1

C
1
, an increase in Q

1
 causes ΔV

1
 to increase and causes 

ΔV
ab

= ΔV − ΔV
1
 to decrease. Thus, since Q

2
= C

2
ΔV

ab( ), Q
2
 will decrease .

  (iv)  With capacitors C
2
and C

3
 in parallel between points a and b, we have Q

ab
= Q

2
+ Q

3
 or 

Q
3

= Q
ab

− Q
2
. Thus, with Q

ab
 increasing [see Step (ii)] while Q

2
 is decreasing 

      [see Step (iii)], we see that Q
3
 will increase .

16.41 (a) From Q = C ΔV( ), Q
25

= 25.0 mF( ) 50.0 V( ) = 1.25 ×10
3
 mC = 1.25 mC

  and Q
40

= 40.0 mF( ) 50.0 V( ) = 2.00 ×10
3
 mC = 2.00 mC

 (b)  Since the negative plate of one capacitor was connected to the positive plate of the other, 

the net charge stored in the new parallel combination is

Q = Q
40

− Q
25

= 2.00 ×10
3
 mC −1.25 ×10

3
 mC = 750 mC

   The two capacitors, now in parallel, have a common potential difference ΔV  across them. 

The new charges on each of the capacitors are ′Q
25

= C
1

ΔV( ) and ′Q
40

= C
2

ΔV( ). Thus,

′Q
25

= C
1

C
2

′Q
40

= 25 mF

40 mF

⎛
⎝⎜

⎞
⎠⎟

′Q
40

= 5

8
′Q
40

  and the total change now stored in the combination may be written as

Q = ′Q
40

+ ′Q
25

= ′Q
40

+ 5

8
′Q
40

= 13

8
′Q
40

= 750 mC

  giving ′Q
40

= 8

13
750 mC( ) = 462 mC  and ′Q

25
= Q − ′Q

40
= 750 − 462( )  mC = 288 mC

 (c) The potential difference across each capacitor in the new parallel combination is

ΔV = Q

C
eq

= Q

C
1

+ C
2

= 750 mC

65.0 mF
= 11.5 V

16.42 (a) The original circuit reduces to a single equivalent capacitor in the steps shown below.

eq

continued on next page
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Cs = 1

C
1

+ 1

C
2

⎛
⎝⎜

⎞
⎠⎟

−1

= 1

5.00 mF
+ 1

10.0 mF

⎛
⎝⎜

⎞
⎠⎟

−1

= 3.33 mF

Cp1
= Cs + C

3
+ Cs = 2 3.33 mF( ) + 2.00 mF = 8.66 mF

Cp 2
= C

2
+ C

2
= 2 10.0 mF( ) = 20.0 mF

C
eq

= 1

Cp1

+ 1

Cp 2

⎛

⎝
⎜

⎞

⎠
⎟

−1

= 1

8.66 mF
+ 1

20.0 mF

⎛
⎝⎜

⎞
⎠⎟

−1

= 6.04 mF

 (b) The total charge stored between points a and b is

    Q
total

= C
eq

ΔV( )
ab

= 6.04 mF( ) 60.0 V( ) = 362 mC

   Then, looking at the third fi gure, observe that the charges of the series capacitors of that 

 fi gure are Qp1
= Qp 2

= Q
total

= 362 mC. Thus, the potential difference across the upper 

 parallel combination shown in the second fi gure is

ΔV( )
p1

=
Qp1

Cp1

= 362 mC

8.66 mF
= 41.8 V

  Finally, the charge on C
3
 is

Q
3

= C
3

ΔV( )
p1

= 2.00 mF( ) 41.8 V( ) = 83.6 mC

16.43 From Q = C ΔV( ), the initial charge of each capacitor is

Q
1

= 1.00 mF( ) 10.0 V( ) = 10.0 mC  and Q
2

= 2.00 mF( ) 0( ) = 0

 After the capacitors are connected in parallel, the potential difference across one is the same as 

that across the other. This gives

ΔV = ′Q
1

1.00 mF
= ′Q

2

2.00 mF
 or  ′Q

2
= 2 ′Q

1
 [1]

 From conservation of charge, ′Q
1

+ ′Q
2

= Q
1

+ Q
2

= 10.0 mC. Then, substituting from Equation [1], 

this becomes

′Q
1

+ 2 ′Q
1

= 10.0 mC , giving ′Q
1

= 10 mC 3 = 3.33 mC

 Finally, from Equation [1], ′Q
2

= 20 mC 3 = 6.67 mC

16.44 (a) We simplify the circuit in stages as shown below:

Cs15.0 mF

6.00 mF 6.00 mF

20.0 mF 20.0 mF 20.0 mF

3.00 mF

Cp Ceq
a ab b a b a b

continued on next page
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1

Cs

= 1

15.0 mF
+ 1

3.00 mF
 or Cs =

15.0 mF( ) 3.00 mF( )
15.0 mF + 3.00 mF

= 2.50 mF

Cp = Cs + 6.00 mF = 2.50 mF + 6.00 mF = 8.50 mF

1

C
eq

= 1

Cp

+ 1

20.0 mF
 or C

eq
=

8.50 mF( ) 20.0 mF( )
8.50 mF + 20.0 mF

= 5.96 mF

 (b) Q
20

= QC p
= Q

eq
= C

eq
ΔV

ab( ) = 5.96 mF( ) 15.0 V( ) = 89.4 mC

ΔVC p
=

QC p

Cp

= 89.4 mC

8.50 mF
= 10.5 V

  so   Q
6

= C
6

ΔVC p( ) = 6.00 mF( ) 10.5 V( ) = 63.0 mC

  and Q
15

= Q
3

= Qs = Cs ΔVC p( ) = 2.50 mF( ) 10.5 V( ) = 26.3 mC

   The charges are 89.4 mC on the 20 mF capacitor, 63.0 mC on the 6 mF capacitor, and 

26.3 mC on both the 15 mF and 3 mF capacitors.

16.45 Energy stored = Q2

2C
= 1

2
C ΔV( )2 = 1

2
4.50 ×10

−6
 F( ) 12.0 V( )2 = 3.24 ×10

−4
 J

16.46 (a) The equivalent capacitance of a series combination of C
1
 and C

2
 is

1

C
eq

= 1

18.0 mF
+ 1

36.0 mF
= 2 +1

36.0 mF
 or C

eq
= 12.0 mF

  When this series combination is connected to a 12.0-V battery, the total stored energy is

Total energy stored = 1

2
C

eq
ΔV( )2 = 1

2
12.0 ×10

−6
 F( ) 12.0 V( )2 = 8.64 ×10

−4
 J

(b) The charge stored on each of the two capacitors in the series combination is

Q
1

= Q
2

= Q
total

= C
eq

ΔV( ) = 12.0 mF( ) 12.0 V( ) = 144 mC = 1.44 ×10
−4

 C

  and the energy stored in each of the individual capacitors is

Energy stored in C
1

= Q
1

2

2C
1

=
1.44 ×10

−4
 C( )2

2 18.0 ×10
−6

 F( ) = 5.76 ×10
−4

 J

  and Energy stored in C
2

= Q
2

2

2C
2

=
1.44 ×10

−4
 C( )2

2 36.0 ×10
−6

 F( ) = 2.88 ×10
−4

 J

Energy stored in C
1

+ Energy stored in C
2

= 5.76 ×10
−4

 J + 2.88 ×10
−4

 J = 8.64 ×10
−4

 J, 

which is the same as the total stored energy found in part (a). This must be true 

if the computed equivalent capacitance is truly equivalent to the original combination.

continued on next page
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 (c)  If C
1
 and C

2
 had been connected in parallel rather than in series, the equivalent capacitance 

would have been C
eq

= C
1

+ C
2

= 18.0 mF + 36.0 mF = 54.0 mF. If the total energy stored 
1
2 C

eq
ΔV( )2⎡⎣ ⎤⎦ in this parallel combination is to be the same as was stored in the original 

series combination, it is necessary that

ΔV =
2 Total energy stored( )

C
eq

=
2 8.64 ×10

−4
 J( )

54.0 ×10
−6

 F
= 5.66 V

   Since the two capacitors in parallel have the same potential difference across them, the 

energy stored in the individual capacitors 1
2 C ΔV( )2⎡⎣ ⎤⎦ is directly proportional to their

  capacitances. The larger capacitor, C
2
, stores the most energy in this case.

16.47 (a) The energy initially stored in the capacitor is

Energy stored( )
1

=
Qi

2

2Ci

= 1

2
Ci ΔV( )

i

2 = 1

2
3.00 mF( ) 6.00 V( )2 = 54.0 mJ

 (b)  When the capacitor is disconnected from the battery, the stored charge becomes isolated 

with no way off the plates. Thus, the charge remains constant at the value Qi as long as 

the capacitor remains disconnected. Since the capacitance of a parallel-plate capacitor 

is C =k ∈
0

A d, when the distance d separating the plates is doubled, the capacitance is 

decreased by a factor of 2 C f = Ci 2 = 1.50 mF( ). The stored energy (with Q unchanged) 

becomes

    Energy stored( )
2

=
Qi

2

2C f

=
Qi

2

2 Ci 2( ) = 2
Qi

2

2Ci

⎛
⎝⎜

⎞
⎠⎟

= 2 Energy stored( )
1

= 108 mJ

 (c)  When the capacitor is reconnected to the battery, the potential difference between the plates 

is reestablished at the original value of ΔV = ΔV( )
i

= 6.00 V, while the capacitance remains 

at C f = Ci 2 = 1.50 mF. The energy stored under these conditions is

Energy stored( )
3

= 1

2
C f ΔV( )

i

2 = 1

2
1.50 mF( ) 6.00 V( )2 = 27.0 mJ

16.48 The energy transferred to the water is

W = 1

100

1

2
Q ΔV( )⎡

⎣⎢
⎤
⎦⎥

=
50.0 C( ) 1.00 ×10

8
 V( )

200
= 2.50 ×10

7
 J

 Thus, if m is the mass of water boiled away, W = m c ΔT( )+ Lv⎡⎣ ⎤⎦ becomes

2.50 ×10
7
 J = m 4186 

J

kg ⋅ °C

⎛
⎝⎜

⎞
⎠⎟

100°C − 30.0°C( )+ 2.26 ×10
6
 J kg

⎡

⎣
⎢

⎤

⎦
⎥

 giving m = 2.50 ×10
7
 J

2.93 ×10
5
 J kg + 2.26 ×10

6
 J kg⎡⎣ ⎤⎦

= 9.79 kg

16.49 (a)  Note that the charge on the plates remains constant at the original value, Q
0
, as the dielec-

tric is inserted. Thus, the change in the potential difference, ΔV = Q C, is due to a change 

in capacitance alone. The ratio of the fi nal and initial capacitances is

    
C f

Ci

=
k ∈

0
A d

∈
0

A d
=k  and 

C f

Ci

=
Q

0
ΔV( )

f

Q
0

ΔV( )
i

=
ΔV( )

i

ΔV( )
f

= 85.0 V

25.0 V
= 3.40

continued on next page
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   Thus, the dielectric constant of the inserted material is k = 3.40 , and the material is 

 probably nylon  (see Table 16.1).

 (b)  If the dielectric only partially fi lled the space between the plates, leaving the remaining 

space air-fi lled, the equivalent dielectric constant would be somewhere between k = 1.00 

(air) and k = 3.40. The resulting potential difference would then lie somewhere between 

ΔV( )
i

= 85.0 V and ΔV( )
f

= 25.0 V.

16.50 (a)  If the maximum electric fi eld that can exist between the plates before breakdown (i.e., 

the dielectric strength) is E
max

, the maximum potential difference across the plates is 

ΔV
max

= E
max

⋅d , where d is the plate separation. The maximum change on either plate then 

has magnitude

    Q
max

= C ΔV
max( ) = C E

max
⋅d( )

  Since the capacitance of a parallel-plate capacitor is C =k ∈
0

A d , the maximum charge is 

Q
max

=
k ∈

0
A

d

⎛
⎝⎜

⎞
⎠⎟

E
max

⋅ d( ) =k ∈
0

AE
max

   The area of each plate is A = 5.00 cm
2 = 5.00 ×10

−4
 m

2
, and when air is the dielectric, 

k = 1.00 and E
max

= 3.00 ×10
6
 V m (see Table 16.1). Thus,

    Q
max

= 1.00( ) 8.85 ×10
−12

 C N ⋅m2( ) 5.00 ×10
−4

 m
2( ) 3.00 ×10

6
 V m( )

= 1.33 ×10
−8

 C = 13.3 nC

 (b) If the dielectric is now polystyrene k = 2.56 and E
max

= 24.0 ×10
6
 V m( ), then

Q
max

= 2.56( ) 8.85 ×10
−12

 C N ⋅m2( ) 5.00 ×10
−4

 m
2( ) 24.0 ×10

6
 V m( )

= 2.72 ×10
−7

 C = 272 nC

16.51 (a) The dielectric constant for Tefl on® is k = 2.1, so the capacitance is

C =
k ∈

0
A

d
=

2.1( ) 8.85 ×10
−12

 C
2

N ⋅m2( ) 175 ×10
−4

 m
2( )

0.040 0 ×10
−3

 m

C = 8.1×10
−9

 F = 8.1 nF

 (b) For Tefl on®, the dielectric strength is E
max

= 60 ×10
6
 V m, so the maximum voltage is

    ΔV
max

= E
max

d = 60 ×10
6
 V m( ) 0.040 0 ×10

−3
 m ( )

ΔV
max

= 2.4 ×10
3
 V = 2.4 kV

16.52 Before the capacitor is rolled, the capacitance of this parallel-plate capacitor is

C =
k ∈

0
A

d
=
k ∈

0
w × L( )
d

 where A is the surface area of one side of a foil strip. Thus, the required length is

L = C ⋅d
k ∈

0
w

=
9.50 ×10

−8
 F( ) 0.025 0 ×10

−3
 m( )

3.70( ) 8.85 ×10
−12

 C
2

N ⋅m2( ) 7.00 ×10
−2

 m( ) = 1.04 m
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16.53 (a) V = m

r
= 1.00 ×10

−12
 kg

1100 kg m
3

= 9.09 ×10
−16

 m
3

  Since V = 4p r 3
3, the radius is r = 3V 4p[ ]1 3

, and the surface area is

A = 4p r 2 = 4p 3V

4p
⎡
⎣⎢

⎤
⎦⎥

2 3

= 4p
3 9.09 ×10

−16
 m

3( )
4p

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 3

= 4.54 ×10
−10

 m
2

 (b) C =
k ∈

0
A

d
=

5.00( ) 8.85 ×10
−12

 C
2

N ⋅m2( ) 4.54 ×10
−10

 m
2( )

100 ×10
−9

 m
= 2.01×10

−13
 F

 (c) Q = C ΔV( ) = 2.01×10
−13

 F( ) 100 ×10
−3

 V( ) = 2.01×10
−14

 C

  and the number of electronic charges is

n = Q

e
= 2.01×10

−14
 C

1.60 ×10
−19

 C
= 1.26 ×10

5

16.54 For a parallel-plate capacitor, C =k ∈
0

A d  and Q =s A = C ΔV( ). Thus, s A = k ∈
0

A d( ) ΔV( ),
and d = k ∈

0
s( ) ΔV( ). With air as the dielectric material k = 1.00( ), the separation of the plates 

must be

d =
1.00( ) 8.85 ×10

−12
 C

2
N ⋅m2( ) 150 V( )

3.00 ×10
−10

 C cm
2( ) 10

4
 cm

2
1 m

2( ) = 4.43 ×10
−4

 m = 0.443 mm

16.55 Since the capacitors are in series, the equivalent capacitance is given by

1

C
eq

= 1

C
1

+ 1

C
2

+ 1

C
3

= d
1

∈
0

A
+ d

2

∈
0

A
+

d
3

∈
0

A
=

d
1

+ d
2

+ d
3

∈
0

A

 or   C
eq

=
∈

0
A

d
 where d = d

1
+ d

2
+ d

3

16.56 (a)  Please refer to the solution of Problem 16.37 where 

the following results were obtained:

C
eq

= 3.33 mF  Q
3

= Q
6

= 180 mC   Q
2

= Q
4

= 120 mC

  The total energy stored in the full circuit is then

Energy stored( )
total

= 1

2
C

eq
ΔV( )2 = 1

2
3.33 ×10

−6
 F( ) 90.0 V( )2

= 1.35 ×10
−2

 J = 13.5 ×10
−3

 J = 13.5 mJ

 (b) The energy stored in each individual capacitor is

  For 2.00 mF:  Energy stored( )
2

= Q
2

2

2C
2

=
120 ×10

−6
 C( )2

2 2.00 ×10
−6

 F( ) = 3.60 ×10
−3

 J = 3.60 mJ

  For 3.00 mF:  Energy stored( )
3

=
Q

3

2

2C
3

=
180 ×10

−6
 C( )2

2 3.00 ×10
−6

 F( ) = 5.40 ×10
−3

 J = 5.40 mJ

3.00 mF 6.00 mF

2.00 mF

90.0 V

4.00 mF

continued on next page
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  For 4.00 mF:  Energy stored( )
4

= Q
4

2

2C
4

=
120 ×10

−6
 C( )2

2 4.00 ×10
−6

 F( ) = 1.80 ×10
−3

 J = 1.80 mJ

  For 6.00 mF:  Energy stored( )
6

=
Q

6

2

2C
6

=
180 ×10

−6
 C( )2

2 6.00 ×10
−6

 F( ) = 2.70 ×10
−3

 J = 2.70 mJ

 (c) The total energy stored in the individual capacitors is

Energy stored = 3.60 + 5.40 +1.80 + 2.70( )  mJ = 13.5 mJ = Energy stored( )
total

   Thus, the sums of the energies stored in the individual capacitors equals the total energy 

stored by the system.

16.57 In the absence of a dielec-

tric, the capacitance of the 

parallel-plate capacitor is 

C
0

= ∈
0

A d.

 With the dielectric inserted, 

it fi lls one-third of the gap 

between the plates as shown 

in sketch (a) at the right. We 

model this situation as con-

sisting of a pair of capaci-

tors, C
1
 and C

2
, connected 

in series as shown in sketch 

(b) at the right. In reality, 

the lower plate of C
1
 and the 

upper plate of C
2
 are one 

and the same, consisting of the lower surface of the dielectric shown in sketch (a). The capaci-

tances in the model of sketch (b) are given by

C
1

=
k ∈

0
A

d 3
=

3k ∈
0

A

d
 and C

2
=

∈
0

A

2d 3
=

3 ∈
0

A

2d

 The equivalent capacitance of the series combination is

1

C
eq

= d

3k ∈
0

A
+ 2d

3 ∈
0

A
= 1

k
+ 2

⎛
⎝⎜

⎞
⎠⎟

d

3 ∈
0

A

⎛
⎝⎜

⎞
⎠⎟

= 2k +1

k
⎛
⎝⎜

⎞
⎠⎟

d

3 ∈
0

A
= 2k +1

3k
⎛
⎝⎜

⎞
⎠⎟

d

∈
0

A
= 2k +1

3k
⎛
⎝⎜

⎞
⎠⎟

1

C
0

 and C
eq

= 3k (2k +1)[ ]C0
.

16.58 For the parallel combination: Cp = C
1

+ C
2
 which gives C

2
= Cp − C

1
 [1]

 For the series combination: 
1

Cs

= 1

C
1

+ 1

C
2

     or     
1

C
2

= 1

Cs

− 1

C
1

=
C

1
− Cs

CsC1

 Thus, we have C
2

=
CsC1

C
1

− Cs

 and equating this to Equation [1] above gives

Cp − C
1

=
CsC1

C
1

− Cs

  or  CpC1
− CpCs − C

1

2 + CsC1
= CsC1

We write this result as:  C
1

2 − CpC1
+ CpCs = 0

1
3 d

2
3 d

d

(a)

k c1

c2

(b)

1
3 d k

2
3 d

continued on next page
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 and use the quadratic formula to obtain  C
1

= 1

2
Cp ± 1

4
Cp

2 − CpCs

 Then, Equation [1] gives  C
2

= 1

2
Cp ∓

1

4
Cp

2 − CpCs

16.59 For a parallel-plate capacitor with plate separation d,

   ΔV
max

= E
max

⋅d   or  d =
ΔV

max

E
max

 The capacitance is then

C =
k ∈

0
A

d
=k ∈

0
A

E
max

ΔV
max

⎛
⎝⎜

⎞
⎠⎟

 and the needed area of the plates is A = C ⋅ ΔV
max
k ∈

0
E

max
, or

   A =
0.250 ×10

−6
 F( ) 4.00 ×10

3
 V( )

3.00( ) 8.85 ×10
−12

 C
2

N ⋅m2( ) 2.00 ×10
8
 V m( ) = 0.188 m

2

16.60 (a) The 1.0-mC is located 0.50 m from point P, so its contribution to the potential at P is

V
1

= ke

q
1

r
1

= 8.99 ×10
9
 N ⋅m2

C
2( ) 1.0 ×10

−6
 C

0.50 m

⎛
⎝⎜

⎞
⎠⎟

= 1.8 ×104
 V

 (b) The potential at P due to the −2.0-mC charge located 0.50 m away is

V
2

= ke

q
2

r
2

= 8.99 ×10
9
 N ⋅m2

C
2( ) − 2.0 ×10

−6
 C

0.50 m

⎛
⎝⎜

⎞
⎠⎟

= − 3.6 ×104
 V

 (c) The total potential at point P is VP = V
1

+ V
2

= +1.8 − 3.6( )×10
4
 V = −1.8 ×10

4
 V

 (d) The work required to move a charge q = 3.0 mC to point P from infi nity is

    W = qΔV = q VP − V∞( ) = 3.0 ×10
−6

 C( ) −1.8 ×10
4
 V − 0( ) = − 5.4 ×10

−2
 J

16.61 The stages for the reduction of this circuit are shown below.

 Thus, C
eq

= 6.25 mF
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16.62 (a)  Due to spherical symmetry, the charge on each of the concentric spherical shells will be 

uniformly distributed over that shell. Inside a spherical surface having a uniform charge 

distribution, the electric fi eld due to the charge on that surface is zero. Thus, in this region, 

the potential due to the charge on that surface is constant and equal to the potential at the 

surface. Outside a spherical surface having a uniform charge distribution, the potential due 

to the charge on that surface is given by V = ke q r, where r is the distance from the center 

of that surface and q is the charge on that surface.

   In the region between a pair of concentric spherical shells, with the inner shell having 

charge +Q and the outer shell having radius b and charge −Q, the total electric potential at 

distance r from the center is given by

V = Vdue to

inner shell

+ Vdue to

outer shell

=
keQ

r
+

ke −Q( )
b

= keQ
1

r
− 1

b
⎛
⎝⎜

⎞
⎠⎟

  The potential difference between the two shells is therefore

ΔV = V
r = a

− V
r = b

= keQ
1

a
− 1

b
⎛
⎝⎜

⎞
⎠⎟ − keQ

1

b
− 1

b
⎛
⎝⎜

⎞
⎠⎟ = keQ

b − a

ab
⎛
⎝⎜

⎞
⎠⎟

  The capacitance of this device is given by

C = Q

ΔV
= ab

ke b − a( )

 (b)  When b >> a, then b − a ≈ b. Thus, in the limit as b → ∞, the capacitance found above 

becomes

C → ab

ke b( ) = a

ke

= 4p ∈
0

a

16.63 The energy stored in a charged capacitor is E
stored

= 1
2 C ΔV( )2

. Hence,

   ΔV =
2 E

stored

C
= 2 300 J( )

30.0 ×10
−6

 F
= 4.47 ×10

3
 V = 4.47 kV

16.64 From Q = C ΔV( ), the capacitance of the capacitor with air between the plates is

C
0

=
Q

0

ΔV
= 150 mC

ΔV

 After the dielectric is inserted, the potential difference is held to the original value, but the charge 

changes to Q = Q
0

+ 200 mC = 350 mC. Thus, the capacitance with the dielectric slab in place is

   C = Q

ΔV
= 350 mC

ΔV

 The dielectric constant of the dielectric slab is therefore

k = C

C
0

= 350 mC

ΔV

⎛
⎝⎜

⎞
⎠⎟

ΔV

150 mC

⎛
⎝⎜

⎞
⎠⎟

= 350

150
= 2.33
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16.65 The charges initially stored on the capacitors are

Q
1

= C
1

ΔV( )
i

= 6.0 mF( ) 250 V( ) = 1.5 ×10
3
 mC

 and Q
2

= C
2

ΔV( )
i

= 2.0 mF( ) 250 V( ) = 5.0 ×10
2
 mC

 When the capacitors are connected in parallel, with the negative plate of one connected to the 

positive pl ate of the other, the net stored charge is

Q = Q
1

− Q
2

= 1.5 ×10
3
 mC − 5.0 ×10

2
 mC = 1.0 ×10

3
 mC

The equivalent capacitance of the parallel combination is C
eq

= C
1

+ C
2

= 8.0 mF. Thus, the fi nal 

potential difference across each of the capacitors is

   ΔV( )′ = Q

C
eq

= 1.0 ×10
3
 mC

8.0 mF
= 125 V

 and the fi nal charge on each capacitor is

′Q
1

= C
1

ΔV( )′ = 6.0 mF( ) 125 V( ) = 750 mC = 0.75 mC

 and ′Q
2

= C
2

ΔV( )′ = 2.0 mF( ) 125 V( ) = 250 mC = 0.25 mC

16.66 (a)  The distance from the charge 2q to either of the charges on the y-axis is r = d 2 + 2d( )2 = 5 d.

Thus,

V =
ke qi

rii

∑ =
ke q

5 d
+

ke q

5 d
=

2ke q

5 d

(b) PE2q =
ke q1

q
3

r
1

+
ke q2

q
3

r
2

=
ke q 2q( )

5 d
+

ke q 2q( )
5 d

=
4ke q

2

5 d

 (c) From conservation of energy with PE = 0 at r = ∞,

KE f = KEi + PEi − PE f = 0 +
4ke q

2

5 d
− 0 =

4ke q
2

5 d

 (d) v f =
2 KE f( )

m
= 2

m

4ke q
2

5 d

⎛
⎝⎜

⎞
⎠⎟

=
8ke q

2

5 md

⎛
⎝⎜

⎞
⎠⎟

1

2

16.67 When excess charge resides on a spherical surface that is far removed from any other charge, this 

excess charge is uniformly distributed over the spherical surface, and the electric potential at the 

surface is the same as if all the excess charge were concentrated at the center of the spherical surface. 

 In the given situation, we have two charged spheres, initially isolated from each other, with 

charges and potentials of QA = +6.00 mC and VA = keQA RA, where RA = 12.0 cm, QB = − 4.00 mC, 

and VB = keQB RB, with RB = 18.0 cm.

 When these spheres are then connected by a long conducting thread, the charges are redistributed 

yielding charges of ′QA  and ′QB ,  respectively( ) until the two surfaces come to a common potential 

′VA = k ′QA RA = ′VB = k ′QB RB( ). When equilibrium is established, we have:

 From conservation of charge:  ′QA + ′QB = QA + QB    ⇒  ′QA + ′QB = +2.00 mC [1]

continued on next page
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 From equal potentials: k ′QA

RA

= k ′QB

RB

   ⇒    ′QB = RB

RB

⎛
⎝⎜

⎞
⎠⎟

′QA
 or  ′QB = 1.50 ′QA  [2]

 Substituting Equation [2] into [1] gives ′QA = +2.00 mC

2.50
= 0.800 mC

 Then, Equation [2] gives  ′QB = 1.50 0.800 mC( ) = 1.20 mC

16.68 The electric fi eld between the plates is directed downward with magnitude

Ey = ΔV

D
= 100 V

2.0 ×10
−3

 m
= 5.0 ×10

4
 N m

 Since the gravitational force experienced by the electron is negligible in comparison to the elec-

trical force acting on it, the vertical acceleration is

ay =
Fy

me

=
qEy

me

=
−1.60 ×10

−19
 C( ) −5.0 ×10

4
 N m( )

9.11×10
−31

 kg
= +8.8 ×10

15
 m s

2

 (a)  At the closest approach to the bottom plate, vy = 0. Thus, the vertical displacement from 

point O is found from vy

2 = v
0 y

2 + 2ay Δy( ) as

Δy =
0 − v

0
sinq

0( )2

2ay

=
− − 5.6 ×10

6
 m s( )sin 45°⎡⎣ ⎤⎦

2

2 8.8 ×10
15

 m s
2( ) = −8.9 ×10

−4
 m = − 0.89 mm

  The minimum distance above the bottom plate is then

d = D

2
+ Δy = 1.0 mm − 0.89 mm = 0.1 mm

 (b)  The time for the electron to go from point O to the upper plate (Δy = +1.0 mm) is found 

from Δy = v
0 y t + 1

2 ay t
2
 as

    +1.0 ×10
−3

 m = − 5.6 ×10
6
 

m

s

⎛
⎝⎜

⎞
⎠⎟ sin 45°⎡

⎣⎢
⎤
⎦⎥

t + 1

2
8.8 ×10

15
 

m

s
2

⎛
⎝⎜

⎞
⎠⎟ t 2

   Solving for t gives a positive solution of t = 1.1×10
−9

 s. The horizontal displacement from 

point O at this time is

Δx = v
0 x t = 5.6 ×10

6
 m s( )cos45°⎡⎣ ⎤⎦ 1.1×10

−9
 s( ) = 4.4 mm
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