CHAPTER

$2 \cap M A X W E L L ' S ~ E Q U A T I O N S ;$ MAGNETISM OF MATTER

32-1 What is Physics?

This chapter reveals some of the breadth of physics because it ranges from the basic science of electric and magnetic fields to the applied science and engineering of magnetic materials. First, we conclude our basic discussion of electric and magnetic fields, finding that most of the physics principles in the last 11 chapters can be summarized in only four equations, known as Maxwell's equations.

Second, we examine the science and engineering of magnetic materials. The careers of many scientists and engineers are focused on understanding why some materials are magnetic and others are not and on how existing magnetic materials can be improved. These researchers wonder why Earth has a magnetic field but you do not. They find countless applications for inexpensive magnetic materials in cars, kitchens, offices, and hospitals, and magnetic materials often show up in unexpected ways. For example, if you have a tattoo (Fig. 32-1) and undergo an MRI (magnetic resonance imaging) scan, the large magnetic field used in the scan may noticeably tug on your tattooed skin because some tattoo inks contain magnetic particles. In another example, some breakfast cereals are advertised as being "iron fortified" because they contain small bits of iron for you to ingest. Because these iron bits are magnetic, you can collect them by passing a magnet over a slurry of water and cereal.

Figure 32-1Some of the inks used for tattoos contain magnetic particles. (Oliver Strewe/Getty Images, Inc.)

Our first step here is to revisit Gauss' law, but this time for magnetic fields.

Copyright © 2011 John Wiley \& Sons, Inc. All rights reserved.

32-2 Gauss' Law for Magnetic Fields

Figure 32-2 shows iron powder that has been sprinkled onto a transparent sheet placed above a bar magnet. The powder grains, trying to align themselves with the magnet's magnetic field, have fallen into a pattern that reveals the field. One end of the magnet is a source of the field (the field lines diverge from it) and the other end is a sink of the field (the field lines converge toward it). By convention, we call the source the north pole of the magnet and the sink the south pole, and we say that the magnet, with its two poles, is an example of a magnetic dipole.

Figure 32-2A bar magnet is a magnetic dipole. The iron filings suggest the magnetic field lines. (Colored light fills the background.)
(© Richard Megna/Fundamental Photographs)

Suppose we break a bar magnet into pieces the way we can break a piece of chalk (Fig. 32-3). We should, it seems, be able to isolate a single magnetic pole, called a magnetic monopole. However, we cannot-not even if we break the magnet down to its individual atoms and then to its electrons and nuclei. Each fragment has a north pole and a south pole. Thus:

The simplest magnetic structure that can exist is a magnetic dipole. Magnetic monopoles do not exist (as far as we know).

Figure 32-3If you break a magnet, each fragment becomes a separate magnet, with its own north and south poles.

Gauss' law for magnetic fields is a formal way of saying that magnetic monopoles do not exist. The law asserts that the net magnetic flux Φ_{B} through any closed Gaussian surface is zero:

$$
\begin{equation*}
\Phi_{B}=\oint \vec{B} \cdot d \vec{A}=0 \quad \text { (Gauss' law for magnetic fields) } \tag{32-1}
\end{equation*}
$$

Contrast this with Gauss' law for electric fields,

$$
\Phi_{E}=\oint \vec{E} \cdot d \vec{A}=\frac{q_{\mathrm{enc}}}{\varepsilon_{0}} \quad \text { (Gauss ' law for electric fields). }
$$

In both equations, the integral is taken over a closed Gaussian surface. Gauss' law for electric fields says that this integral (the net electric flux through the surface) is proportional to the net electric charge $q_{\text {enc }}$ enclosed by the surface. Gauss' law for magnetic fields says that there can be no net magnetic flux through the surface because there can be no net "magnetic charge" (individual magnetic poles) enclosed by the surface. The simplest magnetic structure that can exist and thus be enclosed by a Gaussian surface is a dipole, which consists of both a source and a sink for the field lines. Thus, there must always be as much magnetic flux into the surface as out of it, and the net magnetic flux must always be zero.

Gauss' law for magnetic fields holds for structures more complicated than a magnetic dipole, and it holds even if the Gaussian surface does not enclose the entire structure. Gaussian surface II near the bar magnet of Fig. 32-4 encloses no poles, and we can easily conclude that the net magnetic flux through it is zero. Gaussian surface I is more difficult. It may seem to enclose only the north pole of the magnet because it encloses the label N and not the label S . However, a south pole must be associated with the lower boundary of the surface because magnetic field lines enter the surface there. (The enclosed section is like one piece of the broken bar magnet in Fig. 32-3.) Thus, Gaussian surface I encloses a magnetic dipole, and the net flux through the surface is zero.

Figure 32-4
The field lines for the magnetic field $\vec{B}_{\text {of }}$ a short bar magnet. The red curves represent cross sections of closed, three-dimensional Gaussian surfaces.

CHECKPOINT 1

The figure here shows four closed surfaces with flat top and bottom faces and curved sides. The table gives the areas A of the faces and the magnitudes B of the uniform and perpendicular magnetic fields through those faces; the units of A and B are arbitrary but consistent. Rank the surfaces according to the magnitudes of the magnetic flux through their curved sides, greatest first.

32-3
 Induced Magnetic Fields

In Chapter 30 you saw that a changing magnetic flux induces an electric field, and we ended up with Faraday's law of induction in the form

$$
\begin{equation*}
\left.\oint \vec{E} \cdot d \vec{s}=-\frac{d \Phi_{B}}{d t} \quad \text { (Faraday ' s law of induction }\right) \tag{32-2}
\end{equation*}
$$

Here $\vec{E}_{\text {is the electric field induced along a closed loop by the changing magnetic flux } \Phi_{B} \text { encircled by that loop. Because }}$ symmetry is often so powerful in physics, we should be tempted to ask whether induction can occur in the opposite sense; that is, can a changing electric flux induce a magnetic field?

The answer is that it can; furthermore, the equation governing the induction of a magnetic field is almost symmetric with Eq. 32-2. We often call it Maxwell's law of induction after James Clerk Maxwell, and we write it as

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu_{0} \varepsilon_{0} \frac{d \Phi_{E}}{d t} \quad \text { (Maxwell's law of induction). } \tag{32-3}
\end{equation*}
$$

Here \vec{B} is the magnetic field induced along a closed loop by the changing electric flux Φ_{E} in the region encircled by that loop.
As an example of this sort of induction, we consider the charging of a parallel-plate capacitor with circular plates. (Although we shall focus on this arrangement, a changing electric flux will always induce a magnetic field whenever it occurs.) We assume that the charge on our capacitor (Fig. 32-5a) is being increased at a steady rate by a constant current i in the connecting wires. Then the electric field magnitude between the plates must also be increasing at a steady rate.

$$
\begin{aligned}
& \text { The changing of the } \\
& \text { electric field between } \\
& \text { the plates creates a } \\
& \text { magnetic field. }
\end{aligned}
$$

(b)

Figure 32-5 (a) A circular parallel-plate capacitor, shown in side view, is being charged by a constant current $i .(b) \mathrm{A}$ view from within the capacitor, looking toward the plate at the right in (a). The electric field \vec{E} is uniform, is directed into the page (toward the plate), and grows in magnitude as the charge on the capacitor increases.
The magnetic field B induced by this changing electric field is shown at four points on a circle with a radius r less than the plate radius R.

Figure $32-5 b$ is a view of the right-hand plate of Fig. $32-5 a$ from between the plates. The electric field is directed into the page. Let us consider a circular loop through point 1 in Figs. $32-5 a$ and $32-5 b$, a loop that is concentric with the capacitor plates and has a radius smaller than that of the plates. Because the electric field through the loop is changing, the electric flux through the loop must also be changing. According to Eq. 32-3, this changing electric flux induces a magnetic field around the loop.

Experiment proves that a magnetic field \vec{B} is indeed induced around such a loop, directed as shown. This magnetic field has the same magnitude at every point around the loop and thus has circular symmetry about the central axis of the capacitor plates (the axis extending from one plate center to the other).

If we now consider a larger loop-say, through point 2 outside the plates in Figs. 32-5a and 32-5b-we find that a magnetic field is induced around that loop as well. Thus, while the electric field is changing, magnetic fields are induced between the plates, both inside and outside the gap. When the electric field stops changing, these induced magnetic fields disappear.

Although Eq. 32-3 is similar to Eq. 32-3, the equations differ in two ways. First, Eq. 32-3 has the two extra symbols μ_{0} and \mathbf{E}_{0}, but they appear only because we employ SI units. Second, Eq. 32-3 lacks the minus sign of Eq. 32-2, meaning that the induced electric field \vec{E} and the induced magnetic field \vec{B} have opposite directions when they are produced in otherwise similar
situations. To see this opposition, examine Fig. 32-6, in which an increasing magnetic field \vec{B}, directed into the page, induces an electric field \vec{E}. The induced field $\vec{E}_{\text {is counterclockwise, opposite the induced magnetic field }} \vec{B}_{\text {in }}$ Fig. 32-5 .

The induced \vec{E} direction here is opposite the induced \vec{B} direction in the preceding figure.

Figure 32-6
A uniform magnetic field $\vec{B}_{\text {in }}$ a circular region. The field, directed into the page, is increasing in magnitude. The electric field $\vec{E}_{\text {induced by the changing magnetic field is shown at four points on a circle }}$ concentric with the circular region. Compare this situation with that of Fig. 32-5b.

Ampere-Maxwell Law

Now recall that the left side of Eq. 32-3, the integral of the dot product $\vec{B} \cdot d \vec{s}$ around a closed loop, appears in another equation-namely, Ampere's law:

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu 0^{i} \mathrm{enc} \quad \text { (Ampere ' s law), } \tag{32-4}
\end{equation*}
$$

where $i_{\text {enc }}$ is the current encircled by the closed loop. Thus, our two equations that specify the magnetic field \vec{B} produced by means other than a magnetic material (that is, by a current and by a changing electric field) give the field in exactly the same form. We can combine the two equations into the single equation

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu_{0} \varepsilon_{0} \frac{d \Phi_{E}}{d t}+\mu_{0} i_{\mathrm{enc}} \quad \text { (Ampere-Maxwell law). } \tag{32-5}
\end{equation*}
$$

When there is a current but no change in electric flux (such as with a wire carrying a constant current), the first term on the right side of Eq. 32-5 is zero, and so Eq. 32-5 reduces to Eq. 32-4, Ampere's law. When there is a change in electric flux but no current (such as inside or outside the gap of a charging capacitor), the second term on the right side of Eq. 32-5 is zero, and so Eq. 32-5 reduces to Eq. 32-3, Maxwell's law of induction.

CHECKPOINT 2

The figure shows graphs of the electric field magnitude E versus time t for four uniform electric fields, all contained within identical circular regions as in Fig. 32-5b. Rank the fields according to the magnitudes of the magnetic fields they induce at the edge of the region, greatest first.

Magnetic field induced by changing electric field

A parallel-plate capacitor with circular plates of radius R is being charged as in Fig. 32-5a.
(a)Derive an expression for the magnetic field at radius r for the case $r \leq R$.

A magnetic field can be set up by a current and by induction due to a changing electric flux; both effects are included in Eq. 32-5. There is no current between the capacitor plates of Fig. 32-5, but the electric flux there is changing. Thus, Eq. $\underline{32-5}$ reduces to

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu_{0} \varepsilon_{0} \frac{d \Phi_{E}}{d t} \tag{32-6}
\end{equation*}
$$

We shall separately evaluate the left and right sides of this equation.

Left side of Eq. 32-6:

We choose a circular Amperian loop with a radius $r \leq R$ as shown in Fig. $\xrightarrow{32-5} b$ because we want to evaluate the magnetic field for $r \leq R —$ that is, inside the capacitor. The magnetic field B at all points along the loop is tangent to the loop, as is the path element $d \vec{s}$. Thus, \vec{B} and are either parallel or antiparallel at each point of the loop. For simplicity, assume they are parallel (the choice does not alter our outcome here). Then

$$
\oint \vec{B} \cdot d \vec{s}=\oint B d s \cos 0^{\circ}=\oint B d s
$$

Due to the circular symmetry of the plates, we can also assume that B has the same magnitude at every point around the loop. Thus, B can be taken outside the integral on the right side of the above equation. The integral that remains is $\oint d s$, which simply gives the circumference $2 \pi r$ of the loop. The left side of Eq. 32-6 is then (B)(2 2π r).

Right side of Eq. 32-6: We assume that the electric field \vec{E} is uniform between the capacitor plates and directed perpendicular to the plates. Then the electric flux Φ_{E} through the Amperian loop is $E A$, where A is the area encircled by the loop within the electric field. Thus, the right side of Eq. 32-6 is $\mu_{0} \mathbf{E}_{0} d(E A) / d t$.

Combining results: Substituting our results for the left and right sides into Eq. 32-6, we get

$$
(B)(2 \pi r)=\mu_{0} \varepsilon_{0} \frac{d(E A)}{d t}
$$

Because A is a constant, we write $d(E A)$ as $A d E$; so we have

$$
\begin{equation*}
(B)(2 \pi r)=\mu_{0} \varepsilon_{0} A \frac{d E}{d t} \tag{32-7}
\end{equation*}
$$

The area A that is encircled by the Amperian loop within the electric field is the full area πr^{2} of the loop because the loop's radius r is less than (or equal to) the plate radius R. Substituting πr^{2} for A in Eq. 32-7 leads to, for $r \leq R$,

$$
\begin{equation*}
B=\frac{\mu_{0} \varepsilon 0^{r}}{2} \frac{d E}{d t} \quad \quad \text { (Answer) } \tag{32-8}
\end{equation*}
$$

This equation tells us that, inside the capacitor, B increases linearly with increased radial distance r, from 0 at the central axis to a maximum value at plate radius R.
(b)Evaluate the field magnitude B for $r=R / 5=11.0 \mathrm{~mm}$ and $d E / d t=1.50 \times 10^{12} \mathrm{~V} / \mathrm{m} \cdot \mathrm{s}$.

Calculation:

From the answer to (a), we have

$$
\begin{aligned}
B & =\frac{1}{2} \mu_{0} \varepsilon_{0} r \frac{d E}{d t} \\
& =\frac{1}{2}\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right) \times\left(11.0 \times 10^{-3} \mathrm{~m}\right)\left(1.50 \times 10^{12} \mathrm{~V} / \mathrm{m} \cdot \mathrm{~s}\right) \\
& =9.18 \times 10^{-8} \mathrm{~T} .
\end{aligned}
$$

(c)Derive an expression for the induced magnetic field for the case $r \geq R$.

Calculation:

Our procedure is the same as in (a) except we now use an Amperian loop with a radius r that is greater than the plate radius R, to evaluate B outside the capacitor. Evaluating the left and right sides of Eq. 32-6 again leads to Eq. 32-7. However, we then need this subtle point: The electric field exists only between the plates, not outside the plates. Thus, the area A that is encircled by the Amperian loop in the electric field is not the full area πr^{2} of the loop. Rather, A is only the plate area πR^{2}.

Substituting πR^{2} for A in Eq. 32-7 and solving the result for B give us, for $r \geq R$,

$$
\begin{equation*}
B=\frac{\mu_{0} \varepsilon_{0} R^{2}}{2 r} \frac{d E}{d t} . \quad \text { (Answer) } \tag{32-9}
\end{equation*}
$$

This equation tells us that, outside the capacitor, B decreases with increased radial distance r, from a maximum value at the plate edges (where $r=R$). By substituting $r=R$ into Eqs. 32-8 and 32-9, you can show that these equations are consistent; that is, they give the same maximum value of B at the plate radius.

The magnitude of the induced magnetic field calculated in (b) is so small that it can scarcely be measured with simple apparatus. This is in sharp contrast to the magnitudes of induced electric fields (Faraday's law), which can be measured easily. This experimental difference exists partly because induced emfs can easily be multiplied by using a coil of many turns. No technique of comparable simplicity exists for multiplying induced magnetic fields. In any case, the experiment suggested by this sample problem has been done, and the presence of the induced magnetic fields has been verified quantitatively.

Copyright (C) 2011 John Wiley \& Sons, Inc. All rights reserved.

32-4 Displacement Current
If you compare the two terms on the right side of Eq. $32-5$, you will see that the product $\mathbf{E}_{0}\left(d \Phi_{E} / d t\right)$ must have the dimension of a current. In fact, that product has been treated as being a fictitious current called the displacement current i_{d} :

$$
i_{d}=\varepsilon_{0} \frac{d \Phi_{E}}{d t} \quad \text { (displacement current) }
$$

"Displacement" is poorly chosen in that nothing is being displaced, but we are stuck with the word. Nevertheless, we can now rewrite Eq. 32-5 as

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{d, \mathrm{enc}}+\mu_{0} i_{\mathrm{enc}} \quad \text { (Ampere-Maxwell law) } \tag{32-11}
\end{equation*}
$$

in which $i_{d \text {,enc }}$ is the displacement current that is encircled by the integration loop.
Let us again focus on a charging capacitor with circular plates, as in Fig. 32-7a. The real current i that is charging the plates changes the electric field $\vec{E}_{\text {between the plates. The fictitious displacement current } i_{d} \text { between the plates is associated with that }}$ changing field \vec{E}. Let us relate these two currents.

\oplus Figure 32-7(a) Before and (d) after the plates are charged, there is no magnetic field. (b) During the charging, magnetic field is created by both the real current and the (fictional) displacement current. (c) The same right-hand rule works for both currents to give the direction of the magnetic field.

The charge q on the plates at any time is related to the magnitude E of the field between the plates at that time by Eq. 25-4:

$$
\begin{equation*}
q=\varepsilon_{0} A E \tag{32-12}
\end{equation*}
$$

in which A is the plate area. To get the real current i, we differentiate Eq. 32-12 with respect to time, finding

$$
\begin{equation*}
\frac{d q}{d t}=i=\varepsilon_{0} A \frac{d E}{d t} \tag{32-13}
\end{equation*}
$$

To get the displacement current i_{d}, we can use Eq. 32-10. Assuming that the electric field $\vec{E}_{\text {between the }}$ tho plates is uniform (we neglect any fringing), we can replace the electric flux Φ_{E} in that equation with $E A$. Then Eq. 32-10becomese

$$
\begin{equation*}
i_{d}=\varepsilon_{0} \frac{d \Phi_{E}}{d t}=\varepsilon_{0} \frac{d(E A)}{d t}=\varepsilon_{0} A \frac{d E}{d t} \tag{32-14}
\end{equation*}
$$

Comparing Eqs. 32-13 and 32-14, we see that the real current i charging the capacitor and the fictitious displacement current i_{d} between the plates have the same magnitude:

$$
\begin{equation*}
\left.i_{d}=i \quad \text { (displacement current in a capacitor }\right) \tag{32-15}
\end{equation*}
$$

Thus, we can consider the fictitious displacement current i_{d} to be simply a continuation of the real current i from one plate, across the capacitor gap, to the other plate. Because the electric field is uniformly spread over the plates, the same is true of this fictitious displacement current i_{d}, as suggested by the spread of current arrows in Fig. 32-7b. Although no charge actually moves across the gap between the plates, the idea of the fictitious current i_{d} can help us to quickly find the direction and magnitude of an induced magnetic field, as follows.

Finding the Induced Magnetic Field

In Chapter 29 we found the direction of the magnetic field produced by a real current i by using the right-hand rule of Fig. 29-4. We can apply the same rule to find the direction of an induced magnetic field produced by a fictitious displacement current i_{d}, as is shown in the center of Fig. $\underline{32-7} c$ for a capacitor.

We can also use i_{d} to find the magnitude of the magnetic field induced by a charging capacitor with parallel circular plates of radius R. We simply consider the space between the plates to be an imaginary circular wire of radius R carrying the imaginary current i_{d}. Then, from Eq. 29-20, the magnitude of the magnetic field at a point inside the capacitor at radius r from the center is

$$
\begin{equation*}
B=\left(\frac{\mu_{0} i_{d}}{2 \pi R^{2}}\right) r \quad \text { (inside a circular capacitor) } \tag{32-16}
\end{equation*}
$$

Similarly, from Eq. 29-17, the magnitude of the magnetic field at a point outside the capacitor at radius r is

$$
\begin{equation*}
B=\frac{\mu_{0} i_{d}}{2 \pi r} \quad \text { (outside a circular capacitor) } \tag{32-17}
\end{equation*}
$$

CHECKPOINT 3

The figure is a view of one plate of a parallel-plate capacitor from within the capacitor. The dashed

Top of Form

 lines show four integration paths (path b follows the edge of the plate). Rank the paths according to the magnitude of $\oint \vec{B} \cdot d \vec{s}$ along the paths during the discharging of the capacitor, greatest first.

Treating a changing electric field as a displacement current

A circular parallel-plate capacitor with plate radius R is being charged with a current i.
(d)

A magnetic field can be set up by a current and by induction due to a changing electric flux (Eq. 32-5). Between the plates in Fig. 32-5, the current is zero and we can account for the changing electric flux with a fictitious
displacement current i_{d}. Then integral $\oint \vec{B} \cdot d \vec{s}$ is given by Eq. 32-11, but because there is no real current i
between the capacitor plates, the equation reduces to

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu_{0^{i}} d, \mathrm{enc} \tag{32-18}
\end{equation*}
$$

Calculations:

Because we want to evaluate $\oint \vec{B} \cdot d \vec{s}$ at radius $r=R / 5$ (within the capacitor), the integration loop encircles only a portion $i_{d \text { enc }}$ of the total displacement current i_{d}. Let's assume that i_{d} is uniformly spread over the full plate area. Then the portion of the displacement current encircled by the loop is proportional to the area encircled by the loop:

$$
\frac{\left(\text { encircled displacement current } i_{d, \text { enc }}\right)}{\left(\text { total displacement current } i_{d}\right)}=\frac{\text { encircled area } \pi r^{2}}{\text { full plate area } \pi R^{2}} .
$$

This gives us

$$
i_{d, \mathrm{enc}}=i_{d} \frac{\pi \mathrm{r}^{2}}{\pi \mathrm{R}^{2}}
$$

Substituting this into Eq. 32-18, we obtain

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu_{0}{ }^{i} d \frac{\pi \mathrm{r}^{2}}{\pi \mathrm{R}^{2}} \tag{32-19}
\end{equation*}
$$

Now substituting $i_{d}=i$ (from Eq. $32-15$) and $r=R / 5$ into Eq. $\underline{32-19}$ leads to

$$
\oint \vec{B} \cdot d \vec{s}=\mu_{0} i \frac{(R / 5)^{2}}{R^{2}}=\frac{\mu_{0} i}{25}
$$

(e)In terms of the maximum induced magnetic field, what is the magnitude of the magnetic field induced at $r=R / 5$, inside the capacitor?

Because the capacitor has parallel circular plates, we can treat the space between the plates as an imaginary wire of radius R carrying the imaginary current i_{d}. Then we can use Eq. $\underline{32-16}$ to find the induced magnetic field magnitude B at any point inside the capacitor.

Calculations:

At $r=R / 5$, Eq. $32-16$ yields

$$
\begin{equation*}
B=\left(\frac{\mu_{0} i_{d}}{2 \pi R^{2}}\right) \left\lvert\, r=\frac{\mu_{0} i_{d}(R / 5)}{2 \pi R^{2}}=\frac{\mu_{0} i_{d}}{10 \pi R}\right. \tag{32-20}
\end{equation*}
$$

From Eq. 32-16, the maximum field magnitude $B_{\max }$ within the capacitor occurs at $r=R$. It is

$$
\begin{equation*}
B_{\max }=\left(\frac{\mu_{00_{d}}}{2 \pi R^{2}}\right) R=\frac{\mu_{00_{d}}}{2 \pi R} \tag{32-21}
\end{equation*}
$$

Dividing Eq. $\underline{32-20}$ by Eq. $\underline{32-21}$ and rearranging the result, we find that the field magnitude at $r=R / 5$ is

$$
B=\frac{1}{5} B_{\max }
$$

(Answer)

We should be able to obtain this result with a little reasoning and less work. Equation 32-16 tells us that inside the capacitor, B increases linearly with r. Therefore, a point $\frac{1}{5}$ the distance out to the full radius R of the plates, where $B_{\max }$ occurs, should have a field B that is $\frac{1}{5} B_{\max }$.

Copyright © 2011 John Wiley \& Sons, Inc. All rights reserved.

32-5 Maxwell's Equations

Equation 32-5 is the last of the four fundamental equations of electromagnetism, called Maxwell's equations and displayed in Table 32-1. These four equations explain a diverse range of phenomena, from why a compass needle points north to why a car starts when you turn the ignition key. They are the basis for the functioning of such electromagnetic devices as electric motors, television transmitters and receivers, telephones, fax machines, radar, and microwave ovens.

Table 32-1

Maxwell's Equations ${ }^{\underline{\underline{a}}}$		
Name	Equation	Relates net electric flux to net enclosed electric charge
Gauss' law for electricity	$\oint \vec{E} \cdot d \vec{A}=q_{\mathrm{enc}} / \varepsilon_{0}$	Relates net magnetic flux to net enclosed magnetic charge
Gauss' law for magnetism	$\oint \vec{B} \cdot d \vec{A}=0$	

$$
\begin{array}{ll}
\text { Faraday's law } & \oint \vec{E} \cdot d \vec{s}=-\frac{\mathrm{d} \Phi_{B}}{d t} \\
\text { Ampere-Maxwell } & \oint \vec{B} \cdot d \vec{s}=\mu_{0} \varepsilon_{0} \frac{\mathrm{~d} \Phi_{E}}{d t}+\mu_{0}{ }^{i} \mathrm{enc}
\end{array}
$$

Relates induced electric field to changing magnetic flux

Relates induced magnetic field to changing electric flux and to current

Maxwell's equations are the basis from which many of the equations you have seen since Chapter 21 can be derived. They are also the basis of many of the equations you will see in Chapters $\underline{33}$ through $\underline{36}$ concerning optics.

Copyright © 2011 John Wiley \& Sons, Inc. All rights reserved.

32-6
 Magnets

The first known magnets were lodestones, which are stones that have been magnetized (made magnetic) naturally. When the ancient Greeks and ancient Chinese discovered these rare stones, they were amused by the stones' ability to attract metal over a short distance, as if by magic. Only much later did they learn to use lodestones (and artificially magnetized pieces of iron) in compasses to determine direction.

Today, magnets and magnetic materials are ubiquitous. Their magnetic properties can be traced to their atoms and electrons. In fact, the inexpensive magnet you might use to hold a note on the refrigerator door is a direct result of the quantum physics taking place in the atomic and subatomic material within the magnet. Before we explore some of this physics, let's briefly discuss the largest magnet we commonly use-namely, Earth itself.

The Magnetism of Earth

Earth is a huge magnet; for points near Earth's surface, its magnetic field can be approximated as the field of a huge bar magnet - a magnetic dipole - that straddles the center of the planet. Figure 32-8 is an idealized symmetric depiction of the dipole field, without the distortion caused by passing charged particles from the Sun.

> For Earth, the south pole of the dipole is actually in the north.

Figure 32-8Earth's magnetic field represented as a dipole field. The dipole axis $M M$ makes an angle of 11.5° with Earth's rotational axis $R R$. The south pole of the dipole is in Earth's Northern Hemisphere.

Because Earth's magnetic field is that of a magnetic dipole, a magnetic dipole moment $\vec{\mu}$ is associated with the field. For the idealized field of Fig. 32-8, the magnitude of $\vec{\mu}_{\text {is }} 8.0 \times 10^{22} \mathrm{~J} / \mathrm{T}$ and the direction of $\vec{\mu}$ makes an angle of 11.5° with the rotation axis $(R R)$ of Earth. The dipole axis (MM in Fig. 32-8) lies along $\vec{\mu}$ and intersects Earth's surface at the geomagnetic north pole off the northwest coast of Greenland and the geomagnetic south pole in Antarctica. The lines of the magnetic field \vec{B} generally emerge in the Southern Hemisphere and reenter Earth in the Northern Hemisphere. Thus, the magnetic pole that is in Earth's Northern Hemisphere and known as a "north magnetic pole" is really the south pole of Earth's magnetic dipole.

The direction of the magnetic field at any location on Earth's surface is commonly specified in terms of two angles. The field declination is the angle (left or right) between geographic north (which is toward 90° latitude) and the horizontal component of the field. The field inclination is the angle (up or down) between a horizontal plane and the field's direction.

Magnetometers measure these angles and determine the field with much precision. However, you can do reasonably well with just a compass and a dip meter. A compass is simply a needle-shaped magnet that is mounted so it can rotate freely about a vertical axis. When it is held in a horizontal plane, the north-pole end of the needle points, generally, toward the geomagnetic north pole (really a south magnetic pole, remember). The angle between the needle and geographic north is the field declination. A dip meter is a similar magnet that can rotate freely about a horizontal axis. When its vertical plane of rotation is aligned with the direction of the compass, the angle between the meter's needle and the horizontal is the field inclination.

At any point on Earth's surface, the measured magnetic field may differ appreciably, in both magnitude and direction, from the idealized dipole field of Fig. 32-8. In fact, the point where the field is actually perpendicular to Earth's surface and inward is not located at the geomagnetic north pole off Greenland as we would expect; instead, this so-called dip north pole is located in the Queen Elizabeth Islands in northern Canada, far from Greenland.

In addition, the field observed at any location on the surface of Earth varies with time, by measurable amounts over a period of a few years and by substantial amounts over, say, 100 years. For example, between 1580 and 1820 the direction indicated by compass needles in London changed by 35°.

In spite of these local variations, the average dipole field changes only slowly over such relatively short time periods. Variations over longer periods can be studied by measuring the weak magnetism of the ocean floor on either side of the Mid-Atlantic Ridge (Fig. 32-9). This floor has been formed by molten magma that oozed up through the ridge from Earth's interior, solidified, and was pulled away from the ridge (by the drift of tectonic plates) at the rate of a few centimeters per year. As the magma solidified, it became weakly magnetized with its magnetic field in the direction of Earth's magnetic field at the time of solidification. Study of this solidified magma across the ocean floor reveals that Earth's field has reversed its polarity (directions of the north pole and south pole) about every million years. The reason for the reversals is not known. In fact, the mechanism that produces Earth's magnetic field is only vaguely understood.

Figure 32-9A magnetic profile of the seafloor on either side of the Mid-Atlantic Ridge. The seafloor, extruded through the ridge and spreading out as part of the tectonic drift system, displays a record of the past magnetic history of Earth's core. The direction of the magnetic field produced by the core reverses about every million years.

32-7
 Magnetism and Electrons

Magnetic materials, from lodestones to videotapes, are magnetic because of the electrons within them. We have already seen one way in which electrons can generate a magnetic field: Send them through a wire as an electric current, and their motion produces a magnetic field around the wire. There are two more ways, each involving a magnetic dipole moment that produces a magnetic field in the surrounding space. However, their explanation requires quantum physics that is beyond the physics presented in this book, and so here we shall only outline the results.

Spin Magnetic Dipole Moment

An electron has an intrinsic angular momentum called its spin angular momentum (or just spin) \vec{S}; associated with this spin is an intrinsic spin magnetic dipole moment $\vec{\mu}_{s}$. (By intrinsic, we mean that $\vec{S}_{\text {and }} \vec{\mu}_{\text {sare basic characteristics of an }}$ electron, like its mass and electric charge.) Vectors $\vec{S}_{\text {and }} \vec{\mu}_{\text {sare related by }}$

$$
\begin{equation*}
\vec{\mu}_{s}=-\frac{e}{m} \vec{S} \tag{32-22}
\end{equation*}
$$

in which e is the elementary charge $\left(1.60 \times 10^{-19} \mathrm{C}\right)$ and m is the mass of an electron $\left(9.11 \times 10^{-31} \mathrm{~kg}\right)$. The minus sign means that $\vec{\mu}_{\text {sand }} \vec{S}_{\text {are oppositely directed. Spin }} \vec{S}_{\text {is different from the angular momenta of Chapter } 11 \text { in two respects: }}$
${ }^{1 .}$ Spin \vec{S} itself cannot be measured. However, its component along any axis can be measured.
2. A measured component of \vec{S} is quantized, which is a general term that means it is restricted to certain values. A measured component of $\vec{S}_{\text {can }}$ have only two values, which differ only in sign.
Let us assume that the component of spin \vec{S} is measured along the z axis of a coordinate system. Then the measured component S_{z} can have only the two values given by

$$
\begin{equation*}
S_{z}=m_{s} \frac{h}{2 \pi}, \quad \text { for } m_{s}= \pm \frac{1}{2} \tag{32-23}
\end{equation*}
$$

where m_{s} is called the spin magnetic quantum number and $h\left(=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)$ is the Planck constant, the ubiquitous constant of quantum physics. The signs given in Eq. 32-23 have to do with the direction of S_{z} along the z axis. When S_{z} is parallel to the z axis, m_{s} is $+\frac{1}{2}$ and the electron is said to be spin up. When S_{z} is antiparallel to the z axis, m_{s} is $-\frac{1}{2}$ and the electron is said to be spin down.

The spin magnetic dipole moment $\vec{\mu}_{\text {sof }}$ an electron also cannot be measured; only its component along any axis can be measured, and that component too is quantized, with two possible values of the same magnitude but different signs. We can relate the component $\mu_{s, z}$ measured on the z axis to S_{z} by rewriting Eq. $32-22$ in component form for the z axis as

$$
\mu_{s, z}=-\frac{e}{m} S_{z}
$$

Substituting for S_{z} from Eq. 32-23 then gives us

$$
\begin{equation*}
\mu_{s, z}= \pm \frac{e h}{4 \pi \mathrm{~m}} \tag{32-24}
\end{equation*}
$$

where the plus and minus signs correspond to $\mu_{s, z}$ being parallel and antiparallel to the z axis, respectively.
The quantity on the right side of Eq. $\underline{32-24}$ is called the Bohr magneton μ_{B} :

$$
\begin{equation*}
\mu_{\mathrm{B}}=\frac{e h}{4 \pi m}=9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T} \quad \text { (Bohr magneton) } \tag{32-25}
\end{equation*}
$$

Spin magnetic dipole moments of electrons and other elementary particles can be expressed in terms of μ_{B}. For an electron, the magnitude of the measured z component of $\vec{\mu}_{5 \text { is }}$

$$
\begin{equation*}
\left|\mu_{s, z}\right|=1 \mu_{\mathrm{B}} . \tag{32-26}
\end{equation*}
$$

(The quantum physics of the electron, called quantum electrodynamics, or QED , reveals that $\mu_{s, z}$ is actually slightly greater than $1 \mu_{\mathrm{B}}$, but we shall neglect that fact.)

When an electron is placed in an external magnetic field \vec{B} ext, an energy U can be associated with the orientation of the electron's spin magnetic dipole moment $\vec{\mu}_{s j u s t ~ a s ~ a n ~ e n e r g y ~ c a n ~ b e ~ a s s o c i a t e d ~ w i t h ~ t h e ~ o r i e n t a t i o n ~ o f ~ t h e ~ m a g n e t i c ~ d i p o l e ~}^{\text {a }}$ moment $\vec{\mu}$ of a current loop placed in \vec{B} ext, From Eq. 28-38, the orentation energy for the electron is

$$
\begin{equation*}
U=-\vec{\mu}_{s} \cdot \vec{B}_{\mathrm{ext}}=-\mu_{s, z} B_{\mathrm{ext}}, \tag{32-27}
\end{equation*}
$$

where the z axis is taken to be in the direction of \vec{B} ext,
If we imagine an electron to be a microscopic sphere (which it is not), we can represent the spin \vec{S}, the spin magnetic dipole moment $\vec{\mu}_{S}$, and the associated magnetic dipole field as in Fig. 32-10. Although we use the word "spin" here, electrons do not spin like tops. How, then, can something have angular momentum without actually rotating? Again, we would need quantum physics to provide the answer.

For an electron, the spin is opposite the magnetic dipole moment.

Figure 32-10 The spin $\vec{S}_{\text {, spin magnetic dipole moment }} \vec{\mu}_{s \text {, and magnetic dipole field }} \vec{B}_{\text {of an electron represented as }}$ a microscopic sphere.

Protons and neutrons also have an intrinsic angular momentum called spin and an associated intrinsic spin magnetic dipole moment. For a proton those two vectors have the same direction, and for a neutron they have opposite directions. We shall not examine the contributions of these dipole moments to the magnetic fields of atoms because they are about a thousand times smaller than that due to an electron.

CHECKPOINT 4

The figure here shows the spin orientations of two particles in an external magnetic field $\vec{B}^{\text {ext, . (a) }}$ Top of Form If the particles are electrons, which spin orientation is at lower energy? (b) If, instead, the particles are protons, which spin orientation is at lower energy?

Orbital Magnetic Dipole Moment

When it is in an atom, an electron has an additional angular momentum called its orbital angular momentum $\vec{L}_{\text {orbAssociated }}$ with $\vec{L}_{\text {orbis an orbital magnetic dipole moment }} \vec{\mu}$ orb; the two are related by

$$
\begin{equation*}
\vec{\mu}_{\text {orb }}=-\frac{e}{2 m} \vec{L}_{\text {orb }} \tag{32-28}
\end{equation*}
$$

The minus sign means that $\vec{\mu}$ orband $\vec{L}_{\text {orbhave opposite directions. }}$
Orbital angular momentum \vec{L} orbcannot be measured; only its component along any axis can be measured, and that component is quantized. The component along, say, $\mathrm{a} z$ axis can have only the values given by

$$
\begin{equation*}
L_{\text {orb,z }}=m_{\ell} \frac{h}{2 \pi}, \quad \text { for } m_{\ell}=0, \pm 1, \pm 2, \ldots, \pm \text { (limit) } \tag{32-29}
\end{equation*}
$$

in which m_{ℓ} is called the orbital magnetic quantum number and "limit" refers to some largest allowed integer value for m_{ℓ}. The signs in Eq. 32-29 have to do with the direction of $L_{\text {orb, } z}$ along the z axis.

The orbital magnetic dipole moment $\vec{\mu}$ orbof an electron also cannot itself be measured; only its component along an axis can be measured, and that component is quantized. By writing Eq. $32-28$ for a component along the same z axis as above and then substituting for $L_{\mathrm{orb}, z}$ from Eq. $\underline{32-29}$, we can write the z component $\mu_{\mathrm{orb}, z}$ of the orbital magnetic dipole moment as

$$
\begin{equation*}
\mu_{\text {orb }, \mathrm{z}=-m_{\ell}} \frac{e h}{4 \pi \mathrm{~m}} \tag{32-30}
\end{equation*}
$$

and, in terms of the Bohr magneton, as

$$
\begin{equation*}
\mu_{\text {orb }, \mathrm{z}}=-m_{\ell} \mu_{\mathrm{B}} . \tag{32-31}
\end{equation*}
$$

When an atom is placed in an external magnetic field \vec{B} ext, an energy U can be associated with the orientation of the orbital magnetic dipole moment of each electron in the atom. Its value is

$$
\begin{equation*}
U=-\vec{\mu}_{\mathrm{orb}} \cdot \vec{B}_{\mathrm{cxt}}=-\mu_{\mathrm{orb}, \mathrm{z}} B_{\mathrm{cxt}} \tag{32-32}
\end{equation*}
$$

where the z axis is taken in the direction of \vec{B} ext .
Although we have used the words "orbit" and "orbital" here, electrons do not orbit the nucleus of an atom like planets orbiting the Sun. How can an electron have an orbital angular momentum without orbiting in the common meaning of the term? Once again, this can be explained only with quantum physics.

Loop Model for Electron Orbits

We can obtain Eq. 32-28 with the nonquantum derivation that follows, in which we assume that an electron moves along a circular path with a radius that is much larger than an atomic radius (hence the name "loop model"). However, the derivation does not apply to an electron within an atom (for which we need quantum physics).

We imagine an electron moving at constant speed v in a circular path of radius r, counterclockwise as shown in Fig. 32-11. The motion of the negative charge of the electron is equivalent to a conventional current i (of positive charge) that is clockwise, as also shown in Fig. 32-11. The magnitude of the orbital magnetic dipole moment of such a current loop is obtained from Eq. $\underline{28-35}$ with $N=1$:

$$
\begin{equation*}
\mu_{\text {orb }}=i A, \tag{32-33}
\end{equation*}
$$

where A is the area enclosed by the loop. The direction of this magnetic dipole moment is, from the right-hand rule of Fig. 2921, downward in Fig. 32-11.

Figure 32-11An electron moving at constant speed v in a circular path of radius r that encloses an area A. The electron has an orbital angular momentum $\vec{L}_{\text {orband an associated orbital magnetic dipole moment }} \vec{\mu}$ orb. A clockwise current i (of positive charge) is equivalent to the counterclockwise circulation of the negatively charged electron.

To evaluate Eq. 32-33, we need the current i. Current is, generally, the rate at which charge passes some point in a circuit. Here, the charge of magnitude e takes a time $T=2 \pi r / v$ to circle from any point back through that point, so

$$
\begin{equation*}
i=\frac{\text { charge }}{\text { time }}=\frac{e}{2 \pi r / v} . \tag{32-34}
\end{equation*}
$$

Substituting this and the area $A=\pi r^{2}$ of the loop into Eq. 32-33 gives us

$$
\begin{equation*}
\mu_{\text {orb }}=\frac{e}{2 \pi r / v} \pi r^{2}=\frac{e v r}{2} \tag{32-35}
\end{equation*}
$$

To find the electron's orbital angular momentum \vec{L} orb, we use Eq. $11-18, \vec{\ell}=m(\vec{r} \times \vec{v})$. Because \vec{r} and \vec{v} are perpendicular, \vec{L} orbhas the magnitude

$$
\begin{equation*}
L_{\text {orb }}=m r v \sin 90^{\circ}=m r v . \tag{32-36}
\end{equation*}
$$

The vector $\vec{L}_{\text {orbis directed upward in Fig. 32-11 (see Fig. 11-12). Combining Eqs. 32-35 and 32-36, generalizing to a vector }}$ formulation, and indicating the opposite directions of the vectors with a minus sign yield

$$
\vec{\mu}_{\text {orb }}=-\frac{e}{2 m} \vec{L}_{\text {orb }}
$$

which is Eq. 32-28. Thus, by "classical" (nonquantum) analysis we have obtained the same result, in both magnitude and direction, given by quantum physics. You might wonder, seeing as this derivation gives the correct result for an electron within an atom, why the derivation is invalid for that situation. The answer is that this line of reasoning yields other results that are contradicted by experiments.

Loop Model in a Nonuniform Field

We continue to consider an electron orbit as a current loop, as we did in Fig. 32-11. Now, however, we draw the loop in a nonuniform magnetic field B extas shown in Fig. 32-12a. (This field could be the diverging field near the north pole of the magnet in Fig. 32-4.) We make this change to prepare for the next several sections, in which we shall discuss the forces that act on magnetic materials when the materials are placed in a nonuniform magnetic field. We shall discuss these forces by assuming that the electron orbits in the materials are tiny current loops like that in Fig. 32-12a.

\oplus Figure 32-12
(a) A loop model for an electron orbiting in an atom while in a nonuniform magnetic field \vec{B} ext. (b)

Charge -e moves counterclockwise; the associated conventional current i is clockwise. (c) The magnetic forces $d \vec{F}$ on the left and right sides of the loop, as seen from the plane of the loop. The net force on the loop is upward. (d) Charge -e now moves clockwise. (e) The net force on the loop is now downward.

Here we assume that the magnetic field vectors all around the electron's circular path have the same magnitude and form the same angle with the vertical, as shown in Figs. 32-12b and 32-12d. We also assume that all the electrons in an atom move either counterclockwise (Fig. 32-12b) or clockwise (Fig. 32-12d). The associated conventional current i around the current loop and the orbital magnetic dipole moment $\vec{\mu}$ orbproduced by i are shown for each direction of motion.

Figures 32-12c and 32-12e show diametrically opposite views of a length element $d \vec{L}$ of the loop that has the same direction as i, as seen from the plane of the orbit. Also shown are the field \vec{B} extand the resulting magnetic force $d \vec{F}$ on $d \vec{L}$. Recall that a current along an element $d \vec{L}$ in a magnetic field experiences a magnetic force $d \vec{F}$ as given by Eq. 28-28:

$$
\begin{equation*}
d \vec{F}=i d \vec{L} \times \vec{B}_{\mathrm{ext}} \tag{32-37}
\end{equation*}
$$

On the left side of Fig. 32-12 c, Eq. $\underline{32-37}$ tells us that the force $d \vec{F}$ is directed upward and rightward. On the right side, the force $d \vec{F}$ is just as large and is directed upward and leftward. Because their angles are the same, the horizontal components of these two forces cancel and the vertical components add. The same is true at any other two symmetric points on the loop. Thus, the net force on the current loop of Fig. 32-12b must be upward. The same reasoning leads to a downward net force on the loop in Fig. 32-12d. We shall use these two results shortly when we examine the behavior of magnetic materials in nonuniform magnetic fields.

Copyright (c) 2011 John Wiley \& Sons, Inc. All rights reserved.

32-8

Magnetic Materials

Each electron in an atom has an orbital magnetic dipole moment and a spin magnetic dipole moment that combine vectorially. The resultant of these two vector quantities combines vectorially with similar resultants for all other electrons in the atom, and the resultant for each atom combines with those for all the other atoms in a sample of a material. If the combination of all these magnetic dipole moments produces a magnetic field, then the material is magnetic. There are three general types of magnetism: diamagnetism, paramagnetism, and ferromagnetism.
1.Diamagnetism. is exhibited by all common materials but is so feeble that it is masked if the material also exhibits magnetism of either of the other two types. In diamagnetism, weak magnetic dipole moments are produced in the atoms of the material when the material is placed in an external magnetic field \vec{B} ext; the combination of all those induced dipole moments gives the material as a whole only a feeble net magnetic field. The dipole moments and thus their net field disappear when \vec{B} extis removed. The term diamagnetic material usually refers to materials that exhibit only diamagnetism.
2.Paramagnetism. is exhibited by materials containing transition elements, rare earth elements, and actinide elements (see Appendix G $)$. Each atom of such a material has a permanent resultant magnetic dipole moment, but the moments are randomly oriented in the material and the material as a whole lacks a net magnetic field. However, an external magnetic field \bar{B} extcan partially align the atomic magnetic dipole moments to give the material a net magnetic field. The alignment and thus its field disappear when \bar{B} extis removed. The term paramagnetic material usually refers to materials that exhibit primarily paramagnetism.
3.Ferromagnetism. is a property of iron, nickel, and certain other elements (and of compounds and alloys of these elements). Some of the electrons in these materials have their resultant magnetic dipole moments aligned, which produces regions with strong magnetic dipole moments. An external field \vec{B} extcan then align the magnetic moments of such regions, producing a strong magnetic field for a sample of the material; the field partially persists when \vec{B} extis removed. We usually use the terms ferromagnetic material and magnetic material to refer to materials that exhibit primarily ferromagnetism.

The next three sections explore these three types of magnetism.

Copyright © 2011 John Wiley \& Sons, Inc. All rights reserved.

32-9 Diamagnetism

We cannot yet discuss the quantum physical explanation of diamagnetism, but we can provide a classical explanation with the loop model of Figs. 32-11 and 32-12. To begin, we assume that in an atom of a diamagnetic material each electron can orbit only clockwise as in Fig. 32-12 d or counterclockwise as in Fig. 32-12b. To account for the lack of magnetism in the absence of an external magnetic field \vec{B} ext, we assume the atom lacks a net magnetic dipole moment. This implies that before \vec{B} extis applied, the number of electrons orbiting in one direction is the same as that orbiting in the opposite direction, with the result that the net upward magnetic dipole moment of the atom equals the net downward magnetic dipole moment.

Now let's turn on the nonuniform field \vec{B} extof Fig. 32-12 a, in which \vec{B} extis directed upward but is diverging (the magnetic field lines are diverging). We could do this by increasing the current through an electromagnet or by moving the north pole of a bar magnet closer to, and below, the orbits. As the magnitude of \vec{B} extincreases from zero to its final maximum, steady-state value, a clockwise electric field is induced around each electron's orbital loop according to Faraday's law and Lenz's law. Let us see how this induced electric field affects the orbiting electrons in Figs. 32-12b and 32-12d.

In Fig. 32-12 b, the counterclockwise electron is accelerated by the clockwise electric field. Thus, as the magnetic field \vec{B} ext increases to its maximum value, the electron speed increases to a maximum value. This means that the associated conventional current i and the downward magnetic dipole moment $\vec{\mu}$ due to i also increase.

In Fig. 32-12 d, the clockwise electron is decelerated by the clockwise electric field. Thus, here, the electron speed, the associated current i, and the upward magnetic dipole moment $\vec{\mu}$ due to i all decrease. By turning on field \vec{B} ext, we have given the atom a net magnetic dipole moment that is downward. This would also be so if the magnetic field were uniform.

The nonuniformity of field \vec{B} extalso affects the atom. Because the current i in Fig. 32-12 b increases, the upward magnetic forces $d \vec{F}$ in Fig. 32-12 c also increase, as does the net upward force on the current loop. Because current i in Fig. 32-12d decreases, the downward magnetic forces $d \vec{F}$ in Fig. 32-12e also decrease, as does the net downward force on the current loop. Thus, by turning on the nonuniform field \vec{B} extwe have produced a net force on the atom; moreover, that force is directed away from the region of greater magnetic field.

We have argued with fictitious electron orbits (current loops), but we have ended up with exactly what happens to a diamagnetic material: If we apply the magnetic field of Fig. 32-12, the material develops a downward magnetic dipole moment and experiences an upward force. When the field is removed, both the dipole moment and the force disappear. The external field need not be positioned as shown in Fig. 32-12; similar arguments can be made for other orientations of \vec{B} ext. In general,

A diamagnetic material placed in an external magnetic field \vec{B} extdevelops a magnetic dipole moment directed opposite \vec{B} ext. If the field is nonuniform, the diamagnetic material is repelled from a region of greater magnetic field toward a region of lesser field.

The frog in Fig. 32-13 is diamagnetic (as is any other animal). When the frog was placed in the diverging magnetic field near the top end of a vertical current-carrying solenoid, every atom in the frog was repelled upward, away from the region of stronger magnetic field at that end of the solenoid. The frog moved upward into weaker and weaker magnetic field until the upward magnetic force balanced the gravitational force on it, and there it hung in midair. The frog is not in discomfort because
every atom is subject to the same forces and thus there is no force variation within the frog. The sensation is similar to the "weightless" situation of floating in water, which frogs like very much. If we went to the expense of building a much larger solenoid, we could similarly levitate a person in midair due to the person's diamagnetism.

Figure 32-13An overhead view of a frog that is being levitated in a magnetic field produced by current in a vertical solenoid below the frog.
(Courtesy A. K. Gein, High Field Magnet Laboratory, University of Nijmegen, The Netherlands)

CHECKPOINT 5

The figure shows two diamagnetic spheres located near the south pole of a bar magnet. Are (a) the magnetic forces on the spheres and (b) the magnetic dipole moments of the spheres directed toward

Top of Form

 or away from the bar magnet? (c) Is the magnetic force on sphere 1 greater than, less than, or equal to that on sphere 2 ?

Copyright © 2011 John Wiley \& Sons, Inc. All rights reserved.

32-9
 Diamagnetism

We cannot yet discuss the quantum physical explanation of diamagnetism, but we can provide a classical explanation with the loop model of Figs. 32-11 and 32-12. To begin, we assume that in an atom of a diamagnetic material each electron can orbit only clockwise as in Fig. 32-12d or counterclockwise as in Fig. 32-12b. To account for the lack of magnetism in the absence of an external magnetic field \vec{B} ext, we assume the atom lacks a net magnetic dipole moment. This implies that before \vec{B} extis applied, the number of electrons orbiting in one direction is the same as that orbiting in the opposite direction, with the result that the net upward magnetic dipole moment of the atom equals the net downward magnetic dipole moment.

Now let's turn on the nonuniform field \vec{B} extof Fig. 32-12a, in which \vec{B} extis directed upward but is diverging (the magnetic field lines are diverging). We could do this by increasing the current through an electromagnet or by moving the north pole of a bar magnet closer to, and below, the orbits. As the magnitude of \vec{B} extincreases from zero to its final maximum, steady-state
value, a clockwise electric field is induced around each electron's orbital loop according to Faraday's law and Lenz's law. Let us see how this induced electric field affects the orbiting electrons in Figs. 32-12b and 32-12d.

In Fig. 32-12 b, the counterclockwise electron is accelerated by the clockwise electric field. Thus, as the magnetic field \vec{B} ext increases to its maximum value, the electron speed increases to a maximum value. This means that the associated conventional current i and the downward magnetic dipole moment $\vec{\mu}$ due to i also increase.

In Fig. 32-12 d, the clockwise electron is decelerated by the clockwise electric field. Thus, here, the electron speed, the associated current i, and the upward magnetic dipole moment $\vec{\mu}$ due to i all decrease. By turning on field \vec{B} ext, we have given the atom a net magnetic dipole moment that is downward. This would also be so if the magnetic field were uniform.

The nonuniformity of field \vec{B} extalso affects the atom. Because the current i in Fig. 32-12 b increases, the upward magnetic forces $d \vec{F}$ in Fig. 32-12 c also increase, as does the net upward force on the current loop. Because current i in Fig. 32-12d decreases, the downward magnetic forces $d \vec{F}$ in Fig. 32-12e also decrease, as does the net downward force on the current loop. Thus, by turning on the nonuniform field \vec{B} extwe have produced a net force on the atom; moreover, that force is directed away from the region of greater magnetic field.

We have argued with fictitious electron orbits (current loops), but we have ended up with exactly what happens to a diamagnetic material: If we apply the magnetic field of Fig. 32-12, the material develops a downward magnetic dipole moment and experiences an upward force. When the field is removed, both the dipole moment and the force disappear. The external field need not be positioned as shown in Fig. 32-12; similar arguments can be made for other orientations of \vec{B} ext. In general,

A diamagnetic material placed in an external magnetic field \vec{B} extdevelops a magnetic dipole moment directed opposite \vec{B} ext. If the field is nonuniform, the diamagnetic material is repelled from a region of greater magnetic field toward a region of lesser field.

The frog in Fig. 32-13 is diamagnetic (as is any other animal). When the frog was placed in the diverging magnetic field near the top end of a vertical current-carrying solenoid, every atom in the frog was repelled upward, away from the region of stronger magnetic field at that end of the solenoid. The frog moved upward into weaker and weaker magnetic field until the upward magnetic force balanced the gravitational force on it, and there it hung in midair. The frog is not in discomfort because every atom is subject to the same forces and thus there is no force variation within the frog. The sensation is similar to the "weightless" situation of floating in water, which frogs like very much. If we went to the expense of building a much larger solenoid, we could similarly levitate a person in midair due to the person's diamagnetism.

Figure 32-13An overhead view of a frog that is being levitated in a magnetic field produced by current in a vertical solenoid below the frog.
(Courtesy A. K. Gein, High Field Magnet Laboratory, University of Nijmegen, The Netherlands)

CHECKPOINT 5

The figure shows two diamagnetic spheres located near the south pole of a bar magnet. Are (a) the magnetic forces on the spheres and (b) the magnetic dipole moments of the spheres directed toward or away from the bar magnet? (c) Is the magnetic force on sphere 1 greater than, less than, or equal to that on sphere 2?

Copyright © 2011 John Wiley \& Sons, Inc. All rights reserved.

32-11 Ferromagnetism

When we speak of magnetism in everyday conversation, we almost always have a mental picture of a bar magnet or a disk magnet (probably clinging to a refrigerator door). That is, we picture a ferromagnetic material having strong, permanent magnetism, and not a diamagnetic or paramagnetic material having weak, temporary magnetism.

Iron, cobalt, nickel, gadolinium, dysprosium, and alloys containing these elements exhibit ferromagnetism because of a quantum physical effect called exchange coupling in which the electron spins of one atom interact with those of neighboring atoms. The result is alignment of the magnetic dipole moments of the atoms, in spite of the randomizing tendency of atomic collisions due to thermal agitation. This persistent alignment is what gives ferromagnetic materials their permanent magnetism.

If the temperature of a ferromagnetic material is raised above a certain critical value, called the Curie temperature, the exchange coupling ceases to be effective. Most such materials then become simply paramagnetic; that is, the dipoles still tend to align with an external field but much more weakly, and thermal agitation can now more easily disrupt the alignment. The Curie temperature for iron is $1043 \mathrm{~K}\left(=770^{\circ} \mathrm{C}\right)$.

The magnetization of a ferromagnetic material such as iron can be studied with an arrangement called a Rowland ring (Fig. 3215). The material is formed into a thin toroidal core of circular cross section. A primary coil P having n turns per unit length is
wrapped around the core and carries current i_{P}. (The coil is essentially a long solenoid bent into a circle.) If the iron core were not present, the magnitude of the magnetic field inside the coil would be, from Eq. 29-23,

$$
\begin{equation*}
B_{0}=\mu_{0} i_{\mathrm{p}} n \tag{32-40}
\end{equation*}
$$

However, with the iron core present, the magnetic field \vec{B} inside the coil is greater than \vec{B}_{0}, usually by a large amount. We can write the magnitude of this field as

$$
\begin{equation*}
B=B_{0}+B_{M} \tag{32-41}
\end{equation*}
$$

where B_{M} is the magnitude of the magnetic field contributed by the iron core. This contribution results from the alignment of the atomic dipole moments within the iron, due to exchange coupling and to the applied magnetic field B_{0}, and is proportional to the magnetization M of the iron. That is, the contribution B_{M} is proportional to the magnetic dipole moment per unit volume of the iron. To determine B_{M} we use a secondary coil S to measure B, compute B_{0} with Eq. 32-40, and subtract as suggested by Eq. 3241.

Figure 32-15A Rowland ring. A primary coil P has a core made of the ferromagnetic material to be studied (here iron). The core is magnetized by a current i_{P} sent through coil P. (The turns of the coil are represented by dots.) The extent to which the core is magnetized determines the total magnetic field \vec{B} within coil P. Field \vec{B} can be measured by means of a secondary coil S.

Figure 32-16 shows a magnetization curve for a ferromagnetic material in a Rowland ring: The ratio B_{M} / B_{M}, max , where B_{M}, max is the maximum possible value of B_{M}, corresponding to saturation, is plotted versus B_{0}. The curve is like Fig. 32-14, the magnetization curve for a paramagnetic substance: Both curves show the extent to which an applied magnetic field can align the atomic dipole moments of a material.

Figure 32-16A magnetization curve for a ferromagnetic core material in the Rowland ring of Fig. 32-15. On the vertical axis, 1.0 corresponds to complete alignment (saturation) of the atomic dipoles within the material.

For the ferromagnetic core yielding Fig. 32-16, the alignment of the dipole moments is about 70% complete for $B_{0} \approx 1 \times 10^{-3} \mathrm{~T}$. If B_{0} were increased to 1 T , the alignment would be almost complete (but $B_{0}=1 \mathrm{~T}$, and thus almost complete saturation, is quite difficult to obtain).

Magnetic Domains

Exchange coupling produces strong alignment of adjacent atomic dipoles in a ferromagnetic material at a temperature below the Curie temperature. Why, then, isn't the material naturally at saturation even when there is no applied magnetic field B_{0} ? Why isn't every piece of iron a naturally strong magnet?

To understand this, consider a specimen of a ferromagnetic material such as iron that is in the form of a single crystal; that is, the arrangement of the atoms that make it up-its crystal lattice-extends with unbroken regularity throughout the volume of the specimen. Such a crystal will, in its normal state, be made up of a number of magnetic domains. These are regions of the crystal throughout which the alignment of the atomic dipoles is essentially perfect. The domains, however, are not all aligned. For the crystal as a whole, the domains are so oriented that they largely cancel with one another as far as their external magnetic effects are concerned.

Figure 32-17 is a magnified photograph of such an assembly of domains in a single crystal of nickel. It was made by sprinkling a colloidal suspension of finely powdered iron oxide on the surface of the crystal. The domain boundaries, which are thin regions in which the alignment of the elementary dipoles changes from a certain orientation in one of the domains forming the boundary to a different orientation in the other domain, are the sites of intense, but highly localized and nonuniform, magnetic fields. The suspended colloidal particles are attracted to these boundaries and show up as the white lines (not all the domain boundaries are apparent in Fig. 32-17). Although the atomic dipoles in each domain are completely aligned as shown by the arrows, the crystal as a whole may have only a very small resultant magnetic moment.

Figure 32-17 A photograph of domain patterns within a single crystal of nickel; white lines reveal the boundaries of the domains. The white arrows superimposed on the photograph show the orientations of the magnetic dipoles within the domains and thus the orientations of the net magnetic dipoles of the domains. The crystal as a whole is un-magnetized if the net magnetic field (the vector sum over all the domains) is zero. (Courtesy Ralph W. DeBlois)

Actually, a piece of iron as we ordinarily find it is not a single crystal but an assembly of many tiny crystals, randomly arranged; we call it a polycrystalline solid. Each tiny crystal, however, has its array of variously oriented domains, just as in Fig. 32-17. If we magnetize such a specimen by placing it in an external magnetic field of gradually increasing strength, we produce two effects; together they produce a magnetization curve of the shape shown in Fig. 32-16. One effect is a growth in size of the
domains that are oriented along the external field at the expense of those that are not. The second effect is a shift of the orientation of the dipoles within a domain, as a unit, to become closer to the field direction.

Exchange coupling and domain shifting give us the following result:

A ferromagnetic material placed in an external magnetic field \vec{B} extdevelops a strong magnetic dipole moment in the direction of B ext. If the field is nonuniform, the ferromagnetic material is attracted toward a region of greater magnetic field from a region of lesser field.

Hysteresis

Magnetization curves for ferromagnetic materials are not retraced as we increase and then decrease the external magnetic field B_{0}. Figure 32-18 is a plot of B_{M} versus B_{0} during the following operations with a Rowland ring: (1) Starting with the iron unmagnetized (point a), increase the current in the toroid until $B_{0}\left(=\mu_{0} i n\right)$ has the value corresponding to point b; (2) reduce the current in the toroid winding (and thus B_{0}) back to zero (point c); (3) reverse the toroid current and increase it in magnitude until B_{0} has the value corresponding to point $d ;(4)$ reduce the current to zero again (point e); (5) reverse the current once more until point b is reached again.

Figure 32-18A magnetization curve $(a b)$ for a ferromagnetic specimen and an associated hysteresis loop ($b c d e b$).

The lack of retraceability shown in Fig. 32-18 is called hysteresis, and the curve bcdeb is called a hysteresis loop. Note that at points c and e the iron core is magnetized, even though there is no current in the toroid windings; this is the familiar phenomenon of permanent magnetism.

Hysteresis can be understood through the concept of magnetic domains. Evidently the motions of the domain boundaries and the reorientations of the domain directions are not totally reversible. When the applied magnetic field B_{0} is increased and then decreased back to its initial value, the domains do not return completely to their original configuration but retain some "memory" of their alignment after the initial increase. This memory of magnetic materials is essential for the magnetic storage of information.

This memory of the alignment of domains can also occur naturally. When lightning sends currents along multiple tortuous paths through the ground, the currents produce intense magnetic fields that can suddenly magnetize any ferromagnetic material in nearby rock. Because of hysteresis, such rock material retains some of that magnetization after the lightning strike (after the currents disappear). Pieces of the rock-later exposed, broken, and loosened by weathering-are then lodestones.

Magnetic dipole moment of a compass needle

A compass needle made of pure iron (density $7900 \mathrm{~kg} / \mathrm{m}^{3}$) has a length L of 3.0 cm , a width of 1.0 mm , and a thickness of 0.50 mm . The magnitude of the magnetic dipole moment of an iron atom is $\mu_{\mathrm{Fe}}=2.1 \times 10^{-23} \mathrm{~J} / \mathrm{T}$. If the magnetization of the needle is equivalent to the alignment of 10% of the atoms in the needle, what is the magnitude of the needle's magnetic dipole moment $\vec{\mu}$?

(1) Alignment of all N atoms in the needle would give a magnitude of $N \mu_{\mathrm{Fe}}$ for the needle's magnetic dipole moment $\vec{\mu}$. However, the needle has only 10% alignment (the random orientation of the rest does not give any net contribution to $\vec{\mu}$). Thus,

$$
\begin{equation*}
\mu=0.10 N \mu \mathrm{Fe} \tag{32-42}
\end{equation*}
$$

(2) We can find the number of atoms N in the needle from the needle's mass:

$$
\begin{equation*}
N=\frac{\text { needle ' s mass }}{\text { iron's atomic mass }} \tag{32-43}
\end{equation*}
$$

Finding N :

Iron's atomic mass is not listed in Appendix F, but its molar mass M is. Thus, we write

$$
\begin{equation*}
\text { iron's atomic mass }=\frac{\text { iron's molar mass } M}{\text { Avogadro's number } N_{A}} \tag{32-44}
\end{equation*}
$$

Next, we can rewrite Eq. 32-43 in terms of the needle's mass m, the molar mass M, and Avogadro's number N_{A} :

$$
\begin{equation*}
N=\frac{m N_{A}}{M} \tag{32-45}
\end{equation*}
$$

The needle's mass m is the product of its density and its volume. The volume works out to be $1.5 \times 10^{-8} \mathrm{~m}^{3}$; so

$$
\begin{aligned}
\text { needle 's mass } m & =\text { (needle 's density)(needle 's volume) } \\
& =\left(7900 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1.5 \times 10^{-8} \mathrm{~m}^{3}\right) \\
& =1.185 \times 10^{-4} \mathrm{~kg} .
\end{aligned}
$$

Substituting into Eq. $32-45$ with this value for m, and also $55.847 \mathrm{~g} / \mathrm{mol}(=0.055847 \mathrm{~kg} / \mathrm{mol})$ for M and 6.02×10^{23} for N_{A}, we find

$$
\begin{aligned}
N & =\frac{\left(1.185 \times 10^{-4} \mathrm{~kg}\right)\left(6.02 \times 10^{23}\right)}{0.055847 \mathrm{~kg} / \mathrm{mol}} \\
& =1.2774 \times 10^{21}
\end{aligned}
$$

Finding μ : Substituting our value of N and the value of μ_{Fe} into Eq. 32-42 then yields

$$
\begin{aligned}
\mu & =(0.10)\left(1.2774 \times 10^{21}\right)\left(2.1 \times 10^{-23} \mathrm{~J} / \mathrm{T}\right) \\
& =2.682 \times 10^{-3} \mathrm{~J} / \mathrm{T} \approx 2.7 \times 10^{-3} \mathrm{~J} / \mathrm{T}
\end{aligned}
$$

(Answer)

Gauss' Law for Magnetic Fields The simplest magnetic structures are magnetic dipoles. Magnetic monopoles do not exist (as far as we know). Gauss' law for magnetic fields,

$$
\begin{equation*}
\Phi_{B}=\oint \vec{B} \cdot d \vec{A}=0 \tag{32-1}
\end{equation*}
$$

states that the net magnetic flux through any (closed) Gaussian surface is zero. It implies that magnetic monopoles do not exist.
Maxwell's Extension of Ampere's Law A changing electric flux induces a magnetic field \vec{B}. Maxwell's law,

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu_{0} \varepsilon_{0} \frac{d \Phi_{E}}{d t} \quad \text { (Maxwell ' s law of induction), } \tag{32-3}
\end{equation*}
$$

relates the magnetic field induced along a closed loop to the changing electric flux Φ_{E} through the loop. Ampere's law, $\oint \vec{B} \cdot d \vec{s}=\mu 0^{i} \mathrm{enc}$
(Eq. 32-4), gives the magnetic field generated by a current $i_{\text {enc }}$ encircled by a closed loop. Maxwell's law and Ampere's law can be written as the single equation

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu_{0} \varepsilon_{0} \frac{d \Phi_{E}}{d t}+\mu_{0}{ }^{i} \text { enc } \quad \text { (Ampere }- \text { Maxwell law). } \tag{32-5}
\end{equation*}
$$

Displacement Current We define the fictitious displacement current due to a changing electric field as

$$
\begin{equation*}
i_{d}=\varepsilon_{0} \frac{d \Phi_{E}}{d t} \tag{32-10}
\end{equation*}
$$

Equation 32-5 then becomes

$$
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu_{0}{ }^{i} d, \text { enc }+\mu_{0}{ }^{i} \text { enc } \quad \text { (Ampere - Maxwell law) } \tag{32-11}
\end{equation*}
$$

where $i_{d, \text { enc }}$ is the displacement current encircled by the integration loop. The idea of a displacement current allows us to retain the notion of continuity of current through a capacitor. However, displacement current is not a transfer of charge.

Maxwell's Equations Maxwell's equations, displayed in Table 32-1, summarize electromagnetism and form its foundation, including optics.

Earth's Magnetic Field Earth's magnetic field can be approximated as being that of a magnetic dipole whose dipole moment makes an angle of 11.5° with Earth's rotation axis, and with the south pole of the dipole in the Northern Hemisphere. The direction of the local magnetic field at any point on Earth's surface is given by the field declination (the angle left or right from geographic north) and the field inclination (the angle up or down from the horizontal).

Spin Magnetic Dipole Moment An electron has an intrinsic angular momentum called spin angular momentum (or spin) \vec{S}, with which an intrinsic spin magnetic dipole moment $\vec{\mu}_{\text {sis associated: }}$

$$
\begin{equation*}
\vec{\mu}_{s}=-\frac{e}{m} \vec{S} \tag{32-22}
\end{equation*}
$$

Spin $\vec{S}_{\text {cannot itself be measured, but any component can be measured. Assuming that the measurement is along the } z \text { axis of a }}$ coordinate system, the component S_{z} can have only the values given by

$$
\begin{equation*}
S_{z}=m_{s} \frac{h}{2 \pi}, \quad \text { for } m_{s}= \pm \frac{1}{2} \tag{32-23}
\end{equation*}
$$

where $h\left(=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)$ is the Planck constant. Similarly, the electron's spin magnetic dipole moment $\vec{\mu}_{5 \text { cannot itself be }}$ measured but its component can be measured. Along a z axis, the component is

$$
\begin{equation*}
\mu_{s, z}= \pm \frac{e h}{4 \pi m}= \pm \mu_{B} \tag{32-24,32-26}
\end{equation*}
$$

where μ_{B} is the Bohr magneton:

$$
\begin{equation*}
\mu_{\mathrm{B}}= \pm \frac{e h}{4 \pi m}=9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T} \tag{32-25}
\end{equation*}
$$

The energy U associated with the orientation of the spin magnetic dipole moment in an external magnetic field \vec{B} extis

$$
\begin{equation*}
U=-\vec{\mu}_{s} \cdot \vec{B}_{\text {ext }}=-\mu_{s, z} B_{\text {ext }} \tag{32-27}
\end{equation*}
$$

Orbital Magnetic Dipole Moment An electron in an atom has an additional angular momentum called its orbital angular momentum \vec{L} orb, with which an orbital magnetic dipole moment $\vec{\mu}$ orbis associated:

$$
\begin{equation*}
\vec{\mu}_{\text {orb }}=-\frac{e}{2 m} \vec{L}_{\text {orb }} \tag{32-28}
\end{equation*}
$$

Orbital angular momentum is quantized and can have only values given by

$$
\begin{align*}
L_{\text {orb }, z} & =m_{\ell} \frac{h}{2 \pi} \tag{32-29}\\
\text { for } m_{\ell} & =0, \pm 1, \pm 2, \ldots, \pm \text { (limit) }
\end{align*}
$$

This means that the associated magnetic dipole moment measured along a z axis is given by

$$
\begin{equation*}
\mu_{\text {orb }, z}=-m_{\ell} \frac{e h}{4 \pi m}=-m_{\ell} \mu_{B} . \tag{32-30,32-31}
\end{equation*}
$$

The energy U associated with the orientation of the orbital magnetic dipole moment in an external magnetic field \vec{B} extis

$$
\begin{equation*}
U=-\vec{\mu}_{\text {orb }} \cdot \vec{B}_{\text {ext }}=-\mu_{\text {orb }, z} B_{\text {ext }} \tag{32-32}
\end{equation*}
$$

Diamagnetism Diamagnetic materials do not exhibit magne \vec{B} sm until they are placed in an external magnetic field \vec{B} ext.
They then develop a magnetic dipole moment directed opposite. If the field is nonuniform, the diamagnetic material is repelled from regions of greater magnetic field. This property is called diamagnetism.

Paramagnetism In a paramagnetic material, each atom has a permanent magnetic dipole moment $\vec{\mu}$, but the dipole moments are randomly oriented and the material as a whole lacks a magnetic field. However, an external magnetic field \vec{B} ext can partially align the atomic dipole moments to give the material a net magnetic dipole moment in the direction of \vec{B} ext. If \vec{B} extis nonuniform, the material is attracted to regions of greater magnetic field. These properties are called paramagnetism.

The alignment of the atomic dipole moments increases with an increase in \vec{B} ext and decreases with an increase in temperature T. The extent to which a sample of volume V is magnetized is given by its magnetization \vec{M}, whose magnitude is

$$
\begin{equation*}
M=\frac{\text { measured magnetic moment }}{V} \tag{32-38}
\end{equation*}
$$

Complete alignment of all N atomic magnetic dipoles in a sample, called saturation of the sample, corresponds to the maximum magnetization value $M_{\max }=N \mu / V$. For low values of the ratio $B_{\text {exl }} / T$, we have the approximation

$$
\begin{equation*}
M=C \frac{B_{\text {ext }}}{T} \quad \text { (Curie ' s law) } \tag{32-39}
\end{equation*}
$$

where C is called the Curie constant.

Ferromagnetism In the absence of an external magnetic field, some of the electrons in a ferromagnetic material have their magnetic dipole moments aligned by means of a quantum physical interaction called exchange coupling, producing regions (domains) within the material with strong magnetic dipole moments. An external field \vec{B} extcan align the magnetic dipole moments of those regions, producing a strong net magnetic dipole moment for the material as a whole, in the direction of \vec{B} ext. This net magnetic dipole moment can partially persist when field \vec{B} extis removed. If \vec{B} extis nonuniform, the ferromagnetic material is attracted to regions of greater magnetic field. These properties are called ferromagnetism. Exchange coupling disappears when a sample's temperature exceeds its Curie temperature.

Copyright © 2011 John Wiley \& Sons, Inc. All rights reserved.

1Figure 32-19a shows a capacitor, with circular plates, that is being charged. Point a (near one of the
Top of Form connecting wires) and point b (inside the capacitor gap) are equidistant from the central axis, as are point c (not so near the wire) and point d (between the plates but outside the gap). In Fig. 32-19b, one curve gives the variation with distance r of the magnitude of the magnetic field inside and outside the wire. The other curve gives the variation with distance r of the magnitude of the magnetic field inside and outside the gap. The two curves partially overlap. Which of the three points on the curves correspond to which of the four points of Fig. 32-19a?

Figure 32-19Question 1 .
2Figure 32-20 shows a parallel-plate capacitor and the current in the connecting wires that is discharging the capacitor. Are the directions of (a) electric field \vec{E} and (b) displacement current i_{d} leftward or rightward between the plates? (c) Is the magnetic field at point P into or out of the page?

Figure 32-20Question 2.
${ }^{3}$ Figure 32-21 shows, in two situations, an electric field vector $\vec{E}_{\text {and an induced magnetic field line. In each, Top of Form }}$ is the magnitude of \vec{E} increasing or decreasing?

(a)

(b)

Figure 32-21Question 3 .
${ }^{4}$ Figure 32-22a shows a pair of opposite spin orientations for an electron in an external magnetic field \vec{B} ext. Figure 32-22b gives three choices for the graph of the potential energies associated with those orientations as a function of the magnitude of \vec{B} ext. Choices b and c consist of intersecting lines, choice a of parallel lines. Which is the correct choice?

Figure 32-22Question 4.
${ }^{5}$ An electron in an external magnetic field \vec{B} exthas its spin angular momentum S_{z} antiparallel to \vec{B} ext. If the Top of Form electron undergoes a spin-flip so that S_{z} is then parallel with \vec{B} ext, must energy be supplied to or lost by the electron?
6Does the magnitude of the net force on the current loop of Figs. 32-12a and b increase, decrease, or remain the same if we increase (a) the magnitude of \vec{B} extand (b) the divergence of \vec{B} ext?

7Figure 32-23 shows a face-on view of one of the two square plates of a parallel-plate capacitor, as well as
Top of Form four loops that are located between the plates. The capacitor is being discharged. (a) Neglecting fringing of the magnetic field, rank the loops according to the magnitude of $\oint \vec{B} \cdot d \vec{s}$ along them, greatest first. (b) Along which loop, if any, is the angle between the directions of B and $d \vec{s}$ constant (so that their dot product can easily be evaluated)? (c) Along which loop, if any, is B constant (so that B can be brought in front of the integral sign in Eq. 32-3)?

Figure 32-23Question 7 .
8Figure 32-24 shows three loop models of an electron orbiting counterclockwise within a magnetic field. The fields are nonuniform for models 1 and 2 and uniform for model 3. For each model, are (a) the magnetic dipole moment of the loop and (b) the magnetic force on the loop directed up, directed down, or zero?

(1)

(2)

(3)

Figure $32-24$ Questions $\underline{8}, 9$, and 10 .
9 Replace the current loops of Question $\underline{8}$ and Fig. 32-24 with diamagnetic spheres. For each field, are (a) the Top of Form magnetic dipole moment of the sphere and (b) the magnetic force on the sphere directed up, directed down, or zero?
10Replace the current loops of Question $\underline{8}$ and Fig. 32-24 with paramagnetic spheres. For each field, are (a) the magnetic dipole moment of the sphere and (b) the magnetic force on the sphere directed up, directed down, or zero?

Figure 32-25 represents three rectangular samples of a ferromagnetic material in which the magnetic dipoles of the domains have been directed out of the page (encircled dot) by a very strong applied field B_{0}. In each sample, an island domain still has its magnetic field directed into the page (encircled \times). Sample 1 is one (pure) crystal. The other samples contain impurities collected along lines; domains cannot easily spread across such lines.

Figure 32-25Question 11.

The applied field is now to be reversed and its magnitude kept moderate. The change causes the island domain to grow. (a) Rank the three samples according to the success of that growth, greatest growth first. Ferromagnetic materials in which the magnetic dipoles are easily changed are said to be magnetically soft; when the changes are difficult, requiring strong applied fields, the materials are said to be magnetically hard. (b) Of the three samples, which is the most magnetically hard?

Copyright © 2011 John Wiley \& Sons, Inc. All rights reserved.

sec. 32-2 Gauss' Law for Magnetic Fields

$\bullet 1$ The magnetic flux through each of five faces of a die (singular of "dice") is given by $\Phi_{B}= \pm N \mathrm{~Wb}$, where N Top of Form (= 1 to 5) is the number of spots on the face. The flux is positive (outward) for N even and negative (inward)
for N odd. What is the flux through the sixth face of the die?
${ }^{\bullet}$ Figure 32-26 shows a closed surface. Along the flat top face, which has a radius of 2.0 cm , a perpendicular magnetic field \vec{B} of magnitude 0.30 T is directed outward. Along the flat bottom face, a magnetic flux of 0.70 mWb is directed outward. What are the (a) magnitude and (b) direction (inward or outward) of the magnetic flux through the curved part of the surface?

Figure $\mathbf{3 2 - 2 6 P r o b l e m} 2$.
$\bullet 3$ SSM ILW A Gaussian surface in the shape of a right circular cylinder with end caps has a radius of 12.0 cm Top of Form and a length of 80.0 cm . Through one end there is an inward magnetic flux of $25.0 \mu \mathrm{~Wb}$. At the other end there is a uniform magnetic field of 1.60 mT , normal to the surface and directed outward. What are the (a) magnitude and (b) direction (inward or outward) of the net magnetic flux through the curved surface?
$\bullet \bullet 4$ Two wires, parallel to a z axis and a distance $4 r$ apart, carry equal currents i in opposite directions, as shown in Fig. 32-27. A circular cylinder of radius r and length L has its axis on the z axis, midway between the wires. Use Gauss' law for magnetism to derive an expression for the net outward magnetic flux through the half of the cylindrical surface above the x axis. (Hint: Find the flux through the portion of the $x z$ plane that lies within the cylinder.)

Figure 32-27Problem 4.

sec. 32-3 Induced Magnetic Fields

$\cdot 5$ SSM The induced magnetic field at radial distance 6.0 mm from the central axis of a circular parallel-plate Top of Form capacitor is $2.0 \times 10^{-7} \mathrm{~T}$. The plates have radius 3.0 mm . At what rate $d \vec{E} / \mathrm{dt}_{\mathrm{i}}$ the electric field between the plates changing?
${ }^{\circ} 6 \mathrm{~A}$ capacitor with square plates of edge length L is being discharged by a current of 0.75 A . Figure $32-28$ is a head-on view of one of the plates from inside the capacitor. A dashed rectangular path is shown. If $L=12 \mathrm{~cm}, W=4.0 \mathrm{~cm}$, and $H=2.0 \mathrm{~cm}$, what is the value of $\oint \vec{B} \cdot d \vec{s}$ around the dashed path?

Figure 32-28Problem $\underline{6}$.
-•7 Uniform electric flux. Figure 32-29 shows a circular region of radius $R=3.00 \mathrm{~cm}$ in which a uniform
$\underline{\text { Top of Form }}$ electric flux is directed out of the plane of the page. The total electric flux through the region is given by $\Phi_{E}=(3.00 \mathrm{mV} \cdot \mathrm{m} / \mathrm{s})_{t}$, where t is in seconds. What is the magnitude of the magnetic field that is induced at radial distances (a) 2.00 cm and (b) 5.00 cm ?

Figure 32-29Problems $\underline{\underline{7}}$ to \underline{q} and $\underline{19}$ to $\underline{21}$.

Nonuniform electric flux. Figure 32-29 shows a circular region of radius $R=3.00 \mathrm{~cm}$ in which an electric flux is directed out of the plane of the page. The flux encircled by a concentric circle of radius r is given by $\Phi_{E \text {, enc }}=(0.600 \mathrm{~V} \cdot \mathrm{~m} / \mathrm{s})(\mathrm{r} / \mathrm{R}) t$, where $r \leq R$ and t is in seconds. What is the magnitude of the induced magnetic field at radial distances (a) 2.00 cm and (b) 5.00 cm ?
${ }^{\bullet 0}$ Uniform electric field. In Fig. 32-29, a uniform electric field is directed out of the page within a circular Top of Form region of radius $R=3.00 \mathrm{~cm}$. The field magnitude is given by $E=\left(4.50 \times 10^{-3} \mathrm{~V} / \mathrm{m} \cdot \mathrm{s}\right) t$, where t is in seconds. What is the magnitude of the induced magnetic field at radial distances (a) 2.00 cm and (b) 5.00 cm ?
$\bullet 10$ Nonuniform electric field. In Fig. 32-29, an electric field is directed out of the page within a circular region of radius $R=$ 3.00 cm . The field magnitude is $E=(0.500 \mathrm{~V} / \mathrm{m} \cdot \mathrm{s})(1-r / R) t$, where t is in seconds and r is the radial distance $(r \leq R)$. What is the magnitude of the induced magnetic field at radial distances (a) 2.00 cm and (b) 5.00 cm ?
$\bullet 11$ Suppose that a parallel-plate capacitor has circular plates with radius $R=30 \mathrm{~mm}$ and a plate separation of Top of Form 5.0 mm . Suppose also that a sinusoidal potential difference with a maximum value of 150 V and a frequency of 60 Hz is applied across the plates; that is,

$$
v=(150 v) \sin [2 \pi(60 \mathrm{~Hz}) t] .
$$

(a) Find $B_{\max }(R)$, the maximum value of the induced magnetic field that occurs at $r=R$. (b) Plot $B_{\max }(r)$ for $0<r<10 \mathrm{~cm}$.
$\bullet-12 \mathrm{~A}$ parallel-plate capacitor with circular plates of radius 40 mm is being discharged by a current of 6.0 A . At what radius (a) inside and (b) outside the capacitor gap is the magnitude of the induced magnetic field equal to 75% of its maximum value? (c) What is that maximum value?

sec. 32-4 Displacement Current

$\bullet 13$ At what rate must the potential difference between the plates of a parallel-plate capacitor with a $2.0 \mu \mathrm{~F}$
$\underline{\text { Top of Form }}$ capacitance be changed to produce a displacement current of 1.5 A ?
-14A parallel-plate capacitor with circular plates of radius R is being charged. Show that the magnitude of the current density of the displacement current is $J_{d}=\varepsilon_{0}(d E / d t)$ for $r \leq R$.
-15 SSM Prove that the displacement current in a parallel-plate capacitor of capacitance C can be written as $i_{d}=C(d V / d t)$, where V is the potential difference between the plates.
-16A parallel-plate capacitor with circular plates of radius 0.10 m is being discharged. A circular loop of radius 0.20 m is concentric with the capacitor and halfway between the plates. The displacement current through the loop is 2.0 A . At what rate is the electric field between the plates changing?
$\bullet 17$ A silver wire has resistivity $\rho=1.62 \times 10^{-8} \Omega \cdot \mathrm{~m}$ and a cross-sectional area of $5.00 \mathrm{~mm}^{2}$. The current in the Top of Form wire is uniform and changing at the rate of $2000 \mathrm{~A} / \mathrm{s}$ when the current is 100 A . (a) What is the magnitude of the (uniform) electric field in the wire when the current in the wire is 100 A ? (b) What is the displacement current in the wire at that time? (c) What is the ratio of the magnitude of the magnetic field due to the displacement current to that due to the current at a distance r from the wire?
$\bullet 18$ The circuit in Fig. 32-30 consists of switch S, a 12.0 V ideal battery, a $20.0 \mathrm{M} \Omega$ resistor, and an air-filled capacitor. The capacitor has parallel circular plates of radius 5.00 cm , separated by 3.00 mm . At time $t=0$, switch S is closed to begin charging the capacitor. The electric field between the plates is uniform. At $t=250 \mu \mathrm{~s}$, what is the magnitude of the magnetic field within the capacitor, at radial distance 3.00 cm ?

Figure 32-30Problem 18.
$\bullet 19$ Uniform displacement-current density. Figure $32-29$ shows a circular region of radius $R=3.00 \mathrm{~cm}$ in which Top of Form a displacement current is directed out of the page. The displacement current has a uniform density of magnitude $J_{d}=6.00 \mathrm{~A} / \mathrm{m}^{2}$ What is the magnitude of the magnetic field due to the displacement current at radial distances (a) 2.00 cm and (b) 5.00 cm ?
$\bullet 20$ Uniform displacement current. Figure 32-29 shows a circular region of radius $R=3.00 \mathrm{~cm}$ in which a uniform displacement current $i_{d}=0.500 \mathrm{~A}$ is out of the page. What is the magnitude of the magnetic field due to the displacement current at radial distances (a) 2.00 cm and (b) 5.00 cm ?
\bullet •21(60 Nonuniform displacement-current density. Figure 32-29 shows a circular region of radius $R=3.00 \mathrm{~cm}$ in Top of Form which a displacement current is directed out of the page. The magnitude of the density of this displacement current is $J_{d}=\left(4.00 \mathrm{~A} / \mathrm{m}^{2}\right)(1-r / R)$, where r is the radial distance $(r \leq R)$. What is the magnitude of the magnetic field due to the displacement current at (a) $r=2.00 \mathrm{~cm}$ and (b) $r=5.00 \mathrm{~cm}$?
${ }^{\bullet}$-22 50 Nonuniform displacement current. Figure $32-29$ shows a circular region of radius $R=3.00 \mathrm{~cm}$ in which a displacement current i_{d} is directed out of the page. The magnitude of the displacement current is given by $i_{d}=(3.00 \mathrm{~A})(r / R)$, where r is the radial distance $(r \leq R)$. What is the magnitude of the magnetic field due to i_{d} at radial distances (a) 2.00 cm and (b) 5.00 cm ?
$\bullet \cdot 23$ SSM ILW In Fig. 32-31, a parallel-plate capacitor has square plates of edge length $L=1.0 \mathrm{~m}$. A current of
2.0 A charges the capacitor, producing a uniform electric field $\vec{E}_{\text {between the plates, with }} \vec{E}_{\text {perpendicular }}$ to the plates. (a) What is the displacement current i_{d} through the region between the plates? (b) What is $d E / d t$ in this region? (c) What is the displacement current encircled by the square dashed path of edge length $d=0.50 \mathrm{~m}$?
(d) What $\oint \vec{B} \cdot d \vec{s}$ around this square dashed path?

Edge view

Top view
Figure 32-31Problem 23.
$\bullet \cdot 24$ The magnitude of the electric field between the two circular parallel plates in Fig. 32-32 is $E=\left(4.0 \times 10^{5}\right)-\left(6.0 \times 10^{4} t\right)$, with E in volts per meter and t in seconds. At $t=0, \vec{E}_{\text {is }}$ upward. The plate area is $4.0 \times 10^{-2} \mathrm{~m}^{2}$. For $t \geq 0$, what are the (a) magnitude and (b) direction (up or down) of the displacement current between the plates and (c) is the direction of the induced magnetic field clockwise or counterclockwise in the figure?

Figure 32-32Problem 24.
$\bullet \cdot 25$ ILW As a parallel-plate capacitor with circular plates 20 cm in diameter is being charged, the current density Top of Form of the displacement current in the region between the plates is uniform and has a magnitude of $20 \mathrm{~A} / \mathrm{m}^{2}$. (a) Calculate the magnitude B of the magnetic field at a distance $r=50 \mathrm{~mm}$ from the axis of symmetry of this region. (b) Calculate $d E / d t$ in this region.
$\bullet 26$ A capacitor with parallel circular plates of radius $R=1.20 \mathrm{~cm}$ is discharging via a current of 12.0 A . Consider a loop of radius $R / 3$ that is centered on the central axis between the plates. (a) How much displacement current is encircled by the loop? The maximum induced magnetic field has a magnitude of 12.0 mT . At what radius (b) inside and (c) outside the capacitor gap is the magnitude of the induced magnetic field 3.00 mT ?
${ }^{\bullet} 27$ ILW In Fig. 32-33, a uniform electric field $\vec{E}_{\text {collapses. The vertical axis scale is set by } E_{s}=6.0 \times 10^{5} \mathrm{~N} / \mathrm{C}, \quad \text { Top of Form }}$ and the horizontal axis scale is set by $t_{s}=12.0 \mu \mathrm{~s}$. Calculate the magnitude of the displacement current through a $1.6 \mathrm{~m}^{2}$ area perpendicular to the field during each of the time intervals a, b, and c shown on the graph. (Ignore the behavior at the ends of the intervals.)

Figure 32-33Problem 27.
$\bullet 28$ Figure $32-34 a$ shows the current i that is produced in a wire of resistivity $1.62 \times 10^{-8} \Omega$. The magnitude of the current versus time t is shown in Fig. 32-34b . The vertical axis scale is set by $i_{s}=10.0 \mathrm{~A}$, and the horizontal axis scale is set by $t_{s}=$ 50.0 ms . Point P is at radial distance 9.00 mm from the wire's center. Determine the magnitude of the magnetic field $B_{\text {iat }}$ point P due to the actual current i in the wire at (a) $t=20 \mathrm{~ms}$, (b) $t=40 \mathrm{~ms}$, and (c) $t=60 \mathrm{~ms}$. Next, assume that the electric field driving the current is confined to the wire. Then determine the magnitude of the magnetic field $\vec{B}_{\text {id at point }} P$ due to the displacement current i_{d} in the wire at (d) $t=20 \mathrm{~ms}$, (e) $t=40 \mathrm{~ms}$, and (f) $t=60 \mathrm{~ms}$. At point P at $t=20 \mathrm{~s}$, what is the direction (into or out of the page) of (g) \vec{B}_{i} and (h) $\vec{B}_{i d}$?

Figure 32-34Problem 28.
-•029In Fig. 32-35, a capacitor with circular plates of radius $R=18.0 \mathrm{~cm}$ is connected to a source of emf $\mathrm{E}=\mathrm{E}_{m}$ Top of Form $\sin \omega t$, where $\mathrm{E}_{m}=220 \mathrm{~V}$ and $\omega=130 \mathrm{rad} / \mathrm{s}$. The maximum value of the displacement current is $i_{d}=7.60$ $\mu \mathrm{A}$. Neglect fringing of the electric field at the edges of the plates. (a) What is the maximum value of the current i in the circuit? (b) What is the maximum value of $d \Phi_{E} / d t$, where Φ_{E} is the electric flux through the region between the plates? (c) What is the separation d between the plates? (d) Find the maximum value of the magnitude of \vec{B} between the plates at a distance $r=11.0 \mathrm{~cm}$ from the center.

Figure 32-35Problem 29.
$\cdot 30$ Assume the average value of the vertical component of Earth's magnetic field is $43 \mu \mathrm{~T}$ (downward) for all of Arizona, which has an area of $2.95 \times 10^{5} \mathrm{~km}^{2}$. What then are the (a) magnitude and (b) direction (inward or outward) of the net magnetic flux through the rest of Earth's surface (the entire surface excluding Arizona)?
-31In New Hampshire the average horizontal component of Earth's magnetic field in 1912 was $16 \mu \mathrm{~T}$, and the average inclination or "dip" was 73°. What was the corresponding magnitude of Earth's magnetic field?

Top of Form

sec. 32-7 Magnetism and Electrons

-32Figure 32-36a is a one-axis graph along which two of the allowed energy values (levels) of an atom are plotted. When the atom is placed in a magnetic field of 0.500 T , the graph changes to that of Fig. 32-36 because of the energy associated with $\vec{\mu}$ orb $\cdot \vec{B}$. (We neglect $\vec{\mu}_{\text {s.) Level }} E_{1}$ is unchanged, but level E_{2} splits into a (closely spaced) triplet of levels. What are the allowed values of $m_{\text {ell }}$ associated with (a) energy level E_{1} and (b) energy level E_{2} ? (c) In joules, what amount of energy is represented by the spacing between the triplet levels?

(+
Figure 32-36Problem 32.
$\cdot 33$ SSM WWW If an electron in an atom has an orbital angular momentum with $\underset{\rightarrow}{m}=0$, what are the $\underline{\text { Top of Form }}$ components (a) $L_{\text {orb,z }}$ and (b) $\mu_{\text {orb, } 2}$? If the atom is in an external magnetic field \vec{B} that has magnitude 35 mT and is directed along the z axis, what are (c) the energy $U_{\text {orb }}$ associated with $\vec{\mu}$ orband (d) the energy $U_{\text {spin }}$ associated with $\vec{\mu}_{s}$? If, instead, the electron has $m=-3$, what are (e) $L_{\text {orb, },}$, (f) $\mu_{\text {orb, z, }}$ (g) $U_{\text {orb, }}$ and (h) $U_{\text {spin }}$?
-34What is the energy difference between parallel and antiparallel alignment of the z component of an electron's spin magnetic dipole moment with an external magnetic field of magnitude 0.25 T , directed parallel to the z axis?
-35What is the measured component of the orbital magnetic dipole moment of an electron with (a) $m_{\ell}=1$ and Top of Form (b) $m_{\ell}=-2$?
${ }^{-36}$ An electron is placed in a magnetic field \vec{B} that is directed along a z axis. The energy difference between parallel and antiparallel alignments of the z component of the electron's spin magnetic moment with \vec{B} is $6.00 \times 10^{-25} \mathrm{~J}$. What is the magnitude of \vec{B} ?

sec. 32-9 Diamagnetism

-37Figure 32-37 shows a loop model (loop L) for a diamagnetic material. (a) Sketch the magnetic field lines
$\underline{\text { Top of Form }}$ within and about the material due to the bar magnet. What is the direction of (b) the loop's net magnetic dipole moment $\vec{\mu}_{\text {(c) the conventional current } i \text { in the loop (clockwise or counterclockwise in the figure), }}$ and (d) the magnetic force on the loop?

Figure 32-37Problems $\underline{37}$ and $\underline{71}$.
$\bullet \cdot 38$ Assume that an electron of mass m and charge magnitude e moves in a circular orbit of radius r about a nucleus. A uniform magnetic field \vec{B} is then established perpendicular to the plane of the orbit. Assuming also that the radius of the orbit does
not change and that the change in the speed of the electron due to field \vec{B} is small, find an expression for the change in the orbital magnetic dipole moment of the electron due to the field.

sec. 32-10 Paramagnetism

-39A sample of the paramagnetic salt to which the magnetization curve of Fig. 32-14 applies is to be tested to see whether it obeys Curie's law. The sample is placed in a uniform 0.50 T magnetic field that remains constant throughout the experiment. The magnetization M is then measured at temperatures ranging from 10 to 300 K . Will it be found that Curie's law is valid under these conditions?
-40A sample of the paramagnetic salt to which the magnetization curve of Fig. 32-14 applies is held at room temperature (300 K). At what applied magnetic field will the degree of magnetic saturation of the sample be (a) 50% and (b) 90% ? (c) Are these fields attainable in the laboratory?
$\cdot 41$ SSM ILW A magnet in the form of a cylindrical rod has a length of 5.00 cm and a diameter of 1.00 cm . It Top of Form has a uniform magnetization of $5.30 \times 10^{3} \mathrm{~A} / \mathrm{m}$. What is its magnetic dipole moment?
-42A 0.50 T magnetic field is applied to a paramagnetic gas whose atoms have an intrinsic magnetic dipole moment of $1.0 \times 10^{-}$
${ }^{23} \mathrm{~J} / \mathrm{T}$. At what temperature will the mean kinetic energy of translation of the atoms equal the energy required to reverse such a dipole end for end in this magnetic field?
$\bullet \cdot 43 \mathrm{An}$ electron with kinetic energy K_{e} travels in a circular path that is perpendicular to a uniform magnetic Top of Form field, which is in the positive direction of a z axis. The electron's motion is subject only to the force due to the field. (a) Show that the magnetic dipole moment of the electron due to its orbital motion has magnitude μ $=K_{e} / B$ and that it is in the direction opposite that of \vec{B}. What are the (b) magnitude and (c) direction of the magnetic dipole moment of a positive ion with kinetic energy K_{i} under the same circumstances? (d) An ionized gas consists of 5.3×10^{21} electrons $/ \mathrm{m}^{3}$ and the same number density of ions. Take the average electron kinetic energy to be $6.2 \times 10^{-20} \mathrm{~J}$ and the average ion kinetic energy to be $7.6 \times 10^{-21} \mathrm{~J}$. Calculate the magnetization of the gas when it is in a magnetic field of 1.2 T .
-•44Figure 32-38 gives the magnetization curve for a paramagnetic material. The vertical axis scale is set by $a=0.15$, and the horizontal axis scale is set by $b=0.2 \mathrm{~T} / \mathrm{K}$. Let $\mu_{\text {sam }}$ be the measured net magnetic moment of a sample of the material and $\mu_{\max }$ be the maximum possible net magnetic moment of that sample. According to Curie's law, what would be the ratio $\mu_{\text {sam }} / \mu_{\text {max }}$ were the sample placed in a uniform magnetic field of magnitude 0.800 T , at a temperature of 2.00 K ?

\oplus Figure 32-38Problem 44 .
${ }^{\bullet 0} 45$ SSM Consider a solid containing N atoms per unit volume, each atom having a magnetic dipole moment $\vec{\mu}$. Suppose the direction of $\vec{\mu}$ can be only parallel or antiparallel to an externally applied magnetic field \vec{B} (this will be the case if $\vec{\mu}$ is due to the spin of a single electron). According to statistical mechanics, the probability of an atom being in a state with energy U is proportional to $e^{-U / k T}$, where T is the temperature and k is Boltzmann's constant. Thus, because energy U is $\vec{\mu} \cdot \vec{B}$, the fraction of atoms whose dipole moment is parallel to \vec{B} is proportional to $e^{\mu} B / k T$ and the fraction of atoms whose dipole moment is antiparallel to B is proportional to $e^{-B / k T}$. (a) Show that the magnitude of the magnetization of this solid is $M=N_{\mu} \tanh (\mu B / k T)$. Here tanh is the hyperbolic tangent function: $\tanh (x)\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)$. (b) Show that the
 Show that both (b) and (c) agree qualitatively with Fig. 32-14.

sec. 32-11 Ferromagnetism

${ }^{-46}$ You place a magnetic compass on a horizontal surface, allow the needle to settle, and then give the compass a gentle wiggle to cause the needle to oscillate about its equilibrium position. The oscillation frequency is 0.312 Hz . Earth's magnetic
field at the location of the compass has a horizontal component of $18.0 \mu \mathrm{~T}$. The needle has a magnetic moment of 0.680 $\mu \mathrm{J} / \mathrm{T}$. What is the needle's rotational inertia about its (vertical) axis of rotation?
$\bullet 047 \mathrm{SSM}$ WWW ILW The magnitude of the magnetic dipole moment of Earth is $8.0 \times 10^{22} \mathrm{~J} / \mathrm{T}$. (a) If the origin Top of Form of this magnetism were a magnetized iron sphere at the center of Earth, what would be its radius? (b) What
fraction of the volume of Earth would such a sphere occupy? Assume complete alignment of the dipoles.
The density of Earth's inner core is $14 \mathrm{~g} / \mathrm{cm}^{3}$. The magnetic dipole moment of an iron atom is $2.1 \times 10^{-23} \mathrm{~J} / \mathrm{T}$. (Note: Earth's inner core is in fact thought to be in both liquid and solid forms and partly iron, but a permanent magnet as the source of Earth's magnetism has been ruled out by several considerations. For one, the temperature is certainly above the Curie point.)

- 048 The magnitude of the dipole moment associated with an atom of iron in an iron bar is $2.1 \times 10^{-23} \mathrm{~J} / \mathrm{T}$. Assume that all the atoms in the bar, which is 5.0 cm long and has a cross-sectional area of $1.0 \mathrm{~cm}^{2}$, have their dipole moments aligned. (a) What is the dipole moment of the bar? (b) What torque must be exerted to hold this magnet perpendicular to an external field of magnitude 1.5 T ? (The density of iron is $7.9 \mathrm{~g} / \mathrm{cm}^{3}$.)
$\bullet 49$ SSM The exchange coupling mentioned in Section 32-11 as being responsible for ferromagnetism is not the Top of Form mutual magnetic interaction between two elementary magnetic dipoles. To show this, calculate (a) the magnitude of the magnetic field a distance of 10 nm away, along the dipole axis, from an atom with magnetic dipole moment $1.5 \times 10^{-23} \mathrm{~J} / \mathrm{T}$ (cobalt), and (b) the minimum energy required to turn a second identical dipole end for end in this field. (c) By comparing the latter with the mean translational kinetic energy of 0.040 eV , what can you conclude?
$\bullet 50 \mathrm{~A}$ magnetic rod with length 6.00 cm , radius 3.00 mm , and (uniform) magnetization $2.70 \times 10^{3} \mathrm{~A} / \mathrm{m}$ can turn about its center like a compass needle. It is placed in a uniform magnetic field $\vec{B}_{\text {of magnitude }} 35.0 \mathrm{mT}$, such that the directions of its dipole moment and $\overrightarrow{B^{\prime}}$ make an angle of 68.0°. (a) What is the magnitude of the torque on the rod due to \vec{B} ? (b) What is the change in the orientation energy of the rod if the angle changes to 34.0° ?
$\bullet \cdot 51$ The saturation magnetization $M_{\max }$ of the ferromagnetic metal nickel is $4.70 \times 10^{5} \mathrm{~A} / \mathrm{m}$. Calculate the $\underline{\text { Top of Form }}$ magnetic dipole moment of a single nickel atom. (The density of nickel is $8.90 \mathrm{~g} / \mathrm{cm}^{3}$, and its molar mass is $58.71 \mathrm{~g} / \mathrm{mol}$.)
$\bullet 52$ Measurements in mines and boreholes indicate that Earth's interior temperature increases with depth at the average rate of $30 \mathrm{C}^{\circ} / \mathrm{km}$. Assuming a surface temperature of $10^{\circ} \mathrm{C}$, at what depth does iron cease to be ferromagnetic? (The Curie temperature of iron varies very little with pressure.)
$\bullet \cdot 53 \mathrm{~A}$ Rowland ring is formed of ferromagnetic material. It is circular in cross section, with an inner radius of Top of Form 5.0 cm and an outer radius of 6.0 cm , and is wound with 400 turns of wire. (a) What current must be set up in the windings to attain a toroidal field of magnitude $B_{0}=0.20 \mathrm{mT}$? (b) A secondary coil wound around the toroid has 50 turns and resistance 8.0Ω. If, for this value of B_{0}, we have $B_{M}=800 B_{0}$, how much charge moves through the secondary coil when the current in the toroid windings is turned on?

Additional Problems

54Using the approximations given in Problem 61, find (a) the altitude above Earth's surface where the magnitude of its magnetic field is 50.0% of the surface value at the same latitude; (b) the maximum magnitude of the magnetic field at the core-mantle boundary, 2900 km below Earth's surface; and the (c) magnitude and (d) inclination of Earth's magnetic field at the north geographic pole. (e) Suggest why the values you calculated for (c) and (d) differ from measured values.
55Earth has a magnetic dipole moment of $8.0 \times 10^{22} \mathrm{~J} / \mathrm{T}$. (a) What current would have to be produced in a \quad Top of Form single turn of wire extending around Earth at its geomagnetic equator if we wished to set up such a dipole? Could such an arrangement be used to cancel out Earth's magnetism (b) at points in space well above Earth's surface or (c) on Earth's surface?
56A charge q is distributed uniformly around a thin ring of radius r. The ring is rotating about an axis through its center and perpendicular to its plane, at an angular speed ω. (a) Show that the magnetic moment due to the rotating charge has magnitude $\mu=\frac{1}{2} q \omega r^{2}$. (b) What is the direction of this magnetic moment if the charge is positive?
57A magnetic compass has its needle, of mass 0.050 kg and length 4.0 cm , aligned with the horizontal component of Earth's magnetic field at a place where that component has the value $B_{h}=16 \mu \mathrm{~T}$. After the compass is given a momentary gentle shake, the needle oscillates with angular frequency $\omega=45 \mathrm{rad} / \mathrm{s}$. Assuming that the needle is a uniform thin rod mounted at its center, find the magnitude of its magnetic dipole moment.

58The capacitor in Fig. 32-7 is being charged with a 2.50 A current. The wire radius is 1.50 mm , and the plate radius is 2.00 cm . Assume that the current i in the wire and the displacement current i_{d} in the capacitor gap are both uniformly distributed. What is the magnitude of the magnetic field due to i at the following radial distances from the wire's center: (a) 1.00 mm (inside the wire), (b) 3.00 mm (outside the wire), and (c) 2.20 cm (outside the wire)? What is the magnitude of the magnetic field due to i_{d} at the following radial distances from the central axis between the plates: (d) 1.00 mm (inside the gap), (e) 3.00 mm (inside the gap), and (f) 2.20 cm (outside the gap)? (g) Explain why the fields at the two smaller radii are so different for the wire and the gap but the fields at the largest radius are not.
59A parallel-plate capacitor with circular plates of radius $R=16 \mathrm{~mm}$ and gap width $d=5.0 \mathrm{~mm}$ has a uniform Top of Form electric field between the plates. Starting at time $t=0$, the potential difference between the two plates is $V=$ $(100 \mathrm{~V}) e^{-t / \tau}$, where the time constant $\tau=12 \mathrm{~ms}$. At radial distance $r=0.80 \mathrm{R}$ from the central axis, what is the magnetic field magnitude (a) as a function of time for $t \geq 0$ and (b) at time $t=3 \tau$?
60 A magnetic flux of 7.0 mWb is directed outward through the flat bottom face of the closed surface shown in Fig. 32-39.
Along the flat top face (which has a radius of 4.2 cm) there is a 0.40 T magnetic field \vec{B} directed perpendicular to the face. What are the (a) magnitude and (b) direction (inward or outward) of the magnetic flux through the curved part of the surface?

Figure 32-39Problem 60.
61 SSM The magnetic field of Earth can be approximated as the magnetic field of a dipole. The horizontal and vertical components of this field at any distance r from Earth's center are given by

$$
B_{h}=\frac{\mu_{0} \mu}{4 \pi r^{3}} \cos \lambda_{m}, \quad B_{v}=\frac{\mu_{0} \mu}{2 \pi r^{3}} \sin \lambda_{m}
$$

where λ_{m} is the magnetic latitude (this type of latitude is measured from the geomagnetic equator toward the north or south geomagnetic pole). Assume that Earth's magnetic dipole moment has magnitude $\mu=8.00 \times 10^{22} \mathrm{~A} \cdot \mathrm{~m}^{2}$. (a) Show that the magnitude of Earth's field at latitude λ_{m} is given by

$$
B=\frac{\mu_{0} \mu}{4 \pi r^{3}} \sqrt{1+3 \sin ^{2} \lambda_{m}}
$$

(b) Show that the inclination ${ }_{i}$ of the magnetic field is related to the magnetic latitude λ_{m} by $\tan _{i}=2 \tan \lambda_{m}$.

62Use the results displayed in Problem 61 to predict the (a) magnitude and (b) inclination of Earth's magnetic field at the geomagnetic equator, the (c) magnitude and (d) inclination at geo-magnetic latitude 60.0°, and the (e) magnitude and (f) inclination at the north geomagnetic pole.
63A parallel-plate capacitor with circular plates of radius 55.0 mm is being charged. At what radius (a) inside Top of Form and (b) outside the capacitor gap is the magnitude of the induced magnetic field equal to 50.0% of its maximum value?

64A sample of the paramagnetic salt to which the magnetization curve of Fig. 32-14 applies is immersed in a uniform magnetic field of 2.0 T . At what temperature will the degree of magnetic saturation of the sample be (a) 50% and (b) 90% ?

65A parallel-plate capacitor with circular plates of radius R is being discharged. The displacement current Top of Form through a central circular area, parallel to the plates and with radius $R / 2$, is 2.0 A . What is the discharging current?
66Figure 32-40 gives the variation of an electric field that is perpendicular to a circular area of $2.0 \mathrm{~m}^{2}$. During the time period shown, what is the greatest displacement current through the area?

Figure 32-40Problem 66.
67In Fig. 32-41, a parallel-plate capacitor is being discharged by a current $i=5.0 \mathrm{~A}$. The plates are square with Top of Form edge length $L=8.0 \mathrm{~mm}$. (a) What is the rate at which the electric field between the plates is changing? (b)
What is the value of $\oint \vec{B} \cdot d \vec{s}$ around the dashed path, where $H=2.0 \mathrm{~mm}$ and $W=3.0 \mathrm{~mm}$?

\oplus Figure 32-41 Problem 67 .
68What is the measured component of the orbital magnetic dipole moment of an electron with the values (a) $m_{\ell}=3$ and (b) m_{ℓ} $=-4$?
69In Fig. 32-42, a bar magnet lies near a paper cylinder. (a) Sketch the magnetic field lines that pass through
the surface of the cylinder. (b) What is the sign of $\vec{B} \cdot d \vec{A}_{\text {for every area }} d \vec{A}_{\text {on the surface? (c) Does this }}$ contradict Gauss' law for magnetism? Explain.

Figure 32-42Problem $6 \underline{6}$.
70In the lowest energy state of the hydrogen atom, the most probable distance of the single electron from the central proton (the nucleus) is $5.2 \times 10^{-11} \mathrm{~m}$. (a) Compute the magnitude of the proton's electric field at that distance. The component $\mu_{s, z}$ of the proton's spin magnetic dipole moment measured on a z axis is $1.4 \times 10^{-26} \mathrm{~J} / \mathrm{T}$. (b) Compute the magnitude of the proton's magnetic field at the distance $5.2 \times 10^{-11} \mathrm{~m}$ on the z axis. (Hint: Use Eq. 29-27.) (c) What is the ratio of the spin magnetic dipole moment of the electron to that of the proton?
71Figure 32-37 shows a loop model (loop L) for a paramagnetic material. (a) Sketch the field lines through and Top of Form about the material due to the magnet. What is the direction of (b) the loop's net magnetic dipole moment $\vec{\mu}$, (c) the conventional current i in the loop (clockwise or counterclockwise in the figure), and (d) the magnetic force acting on the loop?
72Two plates (as in Fig. 32-7) are being discharged by a constant current. Each plate has a radius of 4.00 cm . During the discharging, at a point between the plates at radial distance 2.00 cm from the central axis, the magnetic field has a magnitude of 12.5 nT . (a) What is the magnitude of the magnetic field at radial distance 6.00 cm ? (b) What is the current in the wires attached to the plates?
73 SSM If an electron in an atom has orbital angular momentum with m_{ℓ} values limited by ± 3, how many \quad Top of Form values of (a) $L_{\mathrm{orb}, z}$ and (b) $\mu_{\mathrm{orb}, z}$ can the electron have? In terms of h, m, and e, what is the greatest allowed magnitude for (c) $L_{\mathrm{orb}, z}$ and (d) $\mu_{\mathrm{orb}, z}$? (e) What is the greatest allowed magnitude for the z component of the electron's net angular momentum (orbital plus spin)? (f) How many values (signs included) are allowed for the z component of its net angular momentum?

74 A parallel-plate capacitor with circular plates is being charged. Consider a circular loop centered on the central axis and located between the plates. If the loop radius of 3.00 cm is greater than the plate radius, what is the displacement current between the plates when the magnetic field along the loop has magnitude $2.00 \mu \mathrm{~T}$?
75Suppose that ± 4 are the limits to the values of for an electron in an atom. (a) How many different values of Top of Form the electron's $\mu_{\mathrm{orb}, \mathrm{z}}$ are possible? (b) What is the greatest magnitude of those possible values? Next, if the atom is in a magnetic field of magnitude 0.250 T , in the positive direction of the z axis, what are (c) the maximum energy and (d) the minimum energy associated with those possible values of $\mu_{\mathrm{orb}, \text { ? }}$?

